

**US Army Corps
of Engineers®**
Engineer Research and
Development Center

Sampling, Chemical Analysis, and Bioassessment in Accordance with CWA Section 404

**Houston Ship Channel Expansion Channel
Improvement Project, North of Morgan's Point
Houston Ship Channel, Texas
(Part 5 of 6: Appendix 7, Tier III Biological Testing Report)**

Cheryl R. Montgomery, Ph.D.
Brooke N. Stevens, Ph.D.
E. Michelle Bourne, M.S.
US Army Corps of Engineers
Engineer Research and Development Center
Environmental Laboratory
Vicksburg, MS

FINAL

14 June 2023*

*Supersedes all previous versions. Only coversheet revised; no change to content.

Appendix 7: Tier III Biological Testing of HSC ECIP NMP

**TIER III BIOLOGICAL TESTING OF HOUSTON SHIP
CHANNEL EXPANSION CHANNEL IMPROVEMENT
PROJECT (HSC ECIP) (NORTH OF MORGAN'S POINT)
SEDIMENTS**

Prepared for:

USACE, Galveston District (SWG)
2000 Fort Point Road
Galveston, TX 77550

Prepared by:

**Department of the Army
US Army Engineer Research and Development Center
Environmental Laboratory
3909 Halls Ferry Rd, EP-R
Vicksburg, MS 39180**

Alan J. Kennedy, Nicolas L. Melby, J. Daniel Farrar

**Draft Submitted: 1 April 2019
Final Submitted: 5 June 2019**

TABLE OF CONTENTS

1	INTRODUCTION	3
2	METHODS.....	3
2.1	Sediment Compositing	3
2.2	Biological Testing	5
2.2.1	Elutriate Bioassays	5
2.2.2	Elutriate toxicity bioassay: <i>Americamysis bahia</i> (4-day old)	6
2.2.3	Elutriate toxicity bioassay: <i>Menidia beryllina</i>	6
2.2.4	Reference toxicity tests for elutriate bioassays.....	6
2.2.5	Water Quality Parameters	7
2.3	Statistical Analysis.....	7
3	RESULTS	8
3.1	Elutriate bioassay: <i>Americamysis bahia</i> (96-h method).....	8
3.2	Elutriate bioassay: <i>Menidia beryllina</i>	9
3.3	Ammonia Toxicity Background	10
4	References	19
5	Appendices.....	21
5.1	Appendix A. Sediment Compositing Log	21
5.2	Appendix B. Sediment Wet-Dry Ratios	35
5.3	Appendix C. Reference Toxicity Test Statistics for Elutriate Exposures	38
5.3.1	<i>Americamysis bahia</i> (96-h)	38
5.3.2	<i>Menidia beryllina</i>	39
5.4	Appendix D. Elutriate bioassay water quality parameters.....	40
5.5	Appendix E. Statistical Analyses for Elutriate Toxicity Tests	45
5.5.1	<i>Americamysis bahia</i> (96h)	45
5.5.2	<i>Menidia beryllina</i> (96h)	57
5.6	Appendix F. Laboratory Photographs	73
5.6.1	Elutriate preparation	73
5.6.2	Elutriate bioassays	73
5.7	Appendix G. Raw Data Sheets for Elutriate Bioassays	75
5.8	Appendix H. Sediment Chain of Custody Information.....	112

TABLES

Table 1. Summary of test materials.....	4
Table 2. Elutriate toxicity results.....	11
Table 3. Summary of toxicity reference values.....	13
Table 4. Ammonia concentrations in elutriates.....	14

FIGURES

Figure 1. Elutriate testing decision flowchart	8
--	---

1 INTRODUCTION

In this 404 evaluation, a modified elutriate test (MET), otherwise known as an effluent elutriate test (EET), was conducted according to guidance (Appendix B of the Upland Testing Manual 2003). In 404 evaluations (40 CFR Section 230 Subpart G); it is recommended (but not required) that a multi-species testing approach be used (USEPA/USACE 1998) to assess potential effects of the dredged material placed into open water. The receiving system for the discharge was identified as marine/estuarine. Therefore, standard acute (96 hour) toxicity tests described in the Inland Testing Manual (USEPA/USACE 1998) that employ the fish *Menidia beryllina* and the mysid shrimp *Americanasys bahia* were used to assess the EETs.

2 METHODS

2.1 Sediment Compositing

Discrete sediments from each representative sample composite were combined in equal volumes and homogenized in a 7 gal high density polyethylene (HDPE) bucket (e.g., HSCNEW-NMP-06A, 06-B, 06A&C combined in equal volume to create HSCNEW-NMP-06) on 9 October 2018 (up to 3 days after collection depending on the sampling site). A total of 6 gallons of each composite was generated. Homogenization was performed with a 0.43 hp Lightnin™ homogenizer (Rochester, New York) with stainless steel (SS) dual impeller (7" diameter). Mixing was conducted for a minimum of 2 minutes or until uniform consistency was achieved. The 7 gallon HDPE buckets were pre-cleaned prior to homogenization with soap, water, isopropyl alcohol, and rinsed with reverse osmosis water. Props and shafts of the mixer and other tools utilized in the mixing were also cleaned following the same procedure between sites. The composited sediments were left in the 7 gallon bucket and placed in cold storage. Additional information on sample nomenclature and compositing can be found in Table 1 and Appendix A. Sediment Compositing Log.

Table 1. Summary of test materials.

Table summarizes the nomenclature for sediment composites and site water (SW) used in the biological testing evaluation.

Location	Matrix
HSC-NMP-1	Sediment
HSC-NMP-1	Water
HSC-NMP-2	Sediment
HSC-NMP-2	Water
HSC-NMP-3	Sediment
HSC-NMP-3	Water
HSC-NMP-4	Sediment
HSC-NMP-4	Water
HSC-NMP-5	Sediment
HSC-NMP-5	Water
HSC-NMP-6	Sediment
HSC-NMP-6	Water
HSC-NMP-7	Sediment
HSC-NMP-7	Water
HSC-NMP-8	Sediment
HSC-NMP-8	Water
HSC-NMP-9	Sediment
HSC-NMP-9	Water
HSC-NMP-10	Sediment
HSC-NMP-10	Water
HSC-NMP-11	Sediment
HSC-NMP-11	Water

2.2 Biological Testing

Bioassays were conducted by the ERDC Environmental Laboratory (ERDC-EL, Vicksburg, MS) in basic accordance with standard guidance (USEPA 2002; USEPA/USACE 1998; RIA USEPA/USACE, 2003; HSC NMP SAP, 2018). The aquatic toxicity testing facility at the ERDC-EL consists of three laboratories containing five (5) temperature and humidity controlled environmental rooms (Darwin, St. Louis, MO, USA) and four (4) temperature controlled water baths. Elutriate testing was conducted in the environmental rooms. Relevant equipment for processing samples and fulfilling all requirements of laboratory bioassays (e.g., pH meters, DO meters, temperature probes, ammonia probes, refractometers, centrifuges, etc.) were available. Bioassays were conducted to assess the potential for biological effects of dredged material released into the water column during DM discharge (elutriate toxicity tests), using two taxonomically and functionally dissimilar species. Elutriate toxicity tests employed the mysid shrimp *A. bahia* and the fish *M. beryllina*.

2.2.1 Elutriate Bioassays

Modified elutriates were prepared by the ERDC-EL Environmental Chemistry Branch according to guidance (Upland Testing Manual 2003, Appendix B). Briefly, 150 g/L sediment (dry weight, calculated from sediment wet-dry ratios in Appendix B. Sediment Wet-Dry Ratios) was be added to site-collected water at sufficient total volume to accommodate analytical chemistry and biological test requirements. The sediment-water slurry was agitated via aeration to maintain the suspension for 60 minutes, followed by 24 hours settling. The resulting sample was the 100% (undiluted) elutriate used in chemical and biological analysis. Each sediment elutriate composite was prepared using a separate site-water associated with that sampling location (Table 1). The supernatant was siphoned and used for testing. This supernatant was defined as the 100% elutriate. Elutriate bioassays were conducted for 96-hours using the 100% elutriate; where toxicity was expected due to elevated ammonia concentrations, additional 50% and 10% elutriate concentrations were added. All concentrations, including the control and reference waters, were replicated five times. The standard test organisms *A. bahia* (formerly *Mysidopsis bahia*) and *M. beryllina* and were used in survival tests in basic accordance with dredged material evaluation guidance (USEPA/USACE 1991, 1998, 2003). All elutriate toxicity tests were conducted at $20 \pm 1^{\circ}\text{C}$ in temperature and humidity controlled environmental rooms (Darwin, St. Louis, MO, USA).

Other than the reference sediment, all of the site waters collected for elutriate preparation had low salinities (≈ 0 to 22 ppt) that were outside the tolerance ranges of the standard test organisms (25 to 30 ppt; USEPA / USACE, 1998). The salinity of each site water was individually adjusted to approximately 30 ppt by incrementally adding ≈ 151 to 570 g/19L Crystal Sea® Marinemix prior to elutriate preparation. The salinity adjusted site waters were then used to prepare the elutriate test waters, as described above.

2.2.2 Elutriate toxicity bioassay: *Americamysis bahia* (4-day old)

The mysid shrimp *A. bahia* was exposed to the sediment elutriate water at 4-days old (specified range: 1 to 5 days with no more than a 24-h range in age; USEPA/USACE 1998). Shrimp were shipped overnight from Aquatic Biosystems (ABS, Fort Collins, CO, USA), immediately observed for potential shipment impacts and fed brine shrimp (*Artemia*) upon receipt. Mysid shrimp were held for 72-hours (received at the appropriate age to be 4-day old) prior to testing for acclimation and observation. The control water and dilution water was reconstituted seawater (30 ppt) prepared using Crystal Sea® Marinemix. Each test concentration included five (5) replicate, 1 L glass beakers containing 400 mL test media and ten (10) *A. bahia* each. The larger beaker size and two daily feeding rations were used to avoid aggressive interactions and potential for cannibalism during the exposure. Test acceptability criteria included water parameters (temperature, pH, salinity, dissolved oxygen) within the specified range (USEPA/USACE 1991, 1998), at least ninety (90%) survival in the performance control and sensitivity to a reference toxicant (e.g., KCl) within acceptable control chart ranges (\pm two (2) S.D. from the mean). The ninety six (96) hour tests were conducted from 29 October to 2 November 2018, according to USEPA/USACE (1998). The measurement endpoint was survival.

2.2.3 Elutriate toxicity bioassay: *Menidia beryllina*

The inland silverside *M. beryllina* was exposed to the sediment elutriate water at twelve (12) days old (specified range: 1 to 14 days with no more than a 24-h range in age; USEPA/USACE 1998). Fish were shipped overnight from Aquatic Biosystems (ABS, Fort Collins, CO, USA) immediately observed for potential shipment impacts and fed brine shrimp (*Artemia*) upon receipt. The *M. beryllina* were held for 72-hours (received at 9 days old) prior to testing for acclimation and observation. The control water and dilution water was reconstituted seawater (30 ppt) prepared using Crystal Sea® Marinemix. Each test concentration included five (5) replicate, 600 mL glass beakers containing 400 mL test media and ten (10) *M. beryllina* each. Fish were fed at 24-h and 72-h to maintain health. Test acceptability criteria included water parameters (temperature, pH, salinity, dissolved oxygen) within the specified range (USEPA/USACE 1991, 1998), at least ninety (90%) survival in the performance control and sensitivity to a reference toxicant (e.g., KCl) within acceptable control chart ranges (\pm two (2) S.D. from the mean). The ninety six (96) hour tests were conducted from 29 October to 2 November, according to USEPA/USACE (1998). The measurement endpoint was survival.

2.2.4 Reference toxicity tests for elutriate bioassays

Reference toxicant tests were conducted on each batch of test organisms to assess test organism sensitivity relative to historic information recorded in-house laboratory control charts. The selected reference toxicant was potassium chloride (KCl). Reagent grade KCl was weighed and completely dissolved into the appropriate reconstituted waters for each test species (described above). Five concentrations (3 replicates each) were prepared (100, 50, 25, 12.5, 6.25%) with the previously described number of organisms in each replicate. The 100% concentration used was 2.0 g/L for *M. beryllina* and 1.0 g/L

for *A. bahia*. The endpoint measured was survival after a 48- or 96-hour exposure. The median effects endpoints generated in the reference toxicity tests were compared to historic information recorded in ERDC or vendor control charts (\pm two (2) S.D. from the mean).

2.2.5 Water Quality Parameters

Water quality during bioassay testing was measured using either a Yellow Springs Instruments (YSI) Model 556 multiprobe system (Yellow Springs, OH) or a Thermo Scientific Orion Star™ A329 (Thermo Orion Electron Corp., Beverly, MA) for temperature, salinity, pH, and Dissolved Oxygen (D.O.). Total ammonia-N and pH was measured using a 720A ion-selective electrode (ISE) meter (Thermo Orion Electron Corp., Beverly, MA) equipped with a 95-12 ammonia-sensitive electrode and a 9107BN automatic temperature compensating pH triode (Thermo Orion Electron Corp., Beverly, MA). Total overlying water ammonia-N during bioassays was also measured using LeMotte titration kits (Chestertown, MD, USA). Note that both ammonia measurement methods determined ammonia as total ammonia-nitrogen (-N). Total ammonia and un-ionized ammonia were calculated based on molecular mass and measured pH, temperature and salinity in the test water (see EPA 1989), specifically using the following equation:

$$\text{Un-ionized ammonia} = [(17 * \text{NH}_3) / [(14 * (1 + 10^{((0.09018 + (2729.92 / (\text{pH} + 273.15)) + ((0.1552 - (0.0003142 * \text{Temperature})) * ((19.9273 * \text{salinity}) / (1000 - (1.2005109 * \text{salinity})))) - \text{pH})))]]$$

2.3 Statistical Analysis

The process by which elutriates were tested is summarized in Figure 1. Statistical analysis was performed when survival in the undiluted (100%) elutriate water was reduced by more than 10% relative to the dilution water control, as specified by guidance (USEPA / USACE 1998, 2003). Statistical analyses are conducted using Toxcalc® statistical software (Version 5.0, Tidepool Scientific Software, McKinleyville, CA). Data normality was determined by the Shapiro-Wilk's Test and homogeneity of variance by Bartlett's Test. If survival was not reduced by at least 10% relative to the dilution water, no statistics were performed. If at least a 10% reduction was observed, initially a two sample t-test was performed to compare the undiluted (100%) elutriate to the dilution water control. If that was statistically significant, then treatment differences (dilution water, 10%, 50% and 100% elutriates) were performed by one way ANOVA and Dunnett's Method (one-tailed analysis); the Bonferroni t-test was performed in the case of uneven replicates. If normality could not be achieved, Steel's Many-One Rank test (one-tailed analysis) was used. If applicable, the lethal median concentration producing 50% mortality (LC50) in elutriate or reference toxicity test dilutions is determined by the Spearman-Karber method using Toxcalc® (version 5.0, Tidepool Scientific Software, McKinleyville, CA).

Figure 1. Elutriate testing decision flowchart.

3 RESULTS

Elutriate toxicity tests were conducted during the week of 29 October 2018. The elutriates were prepared from project sediments within 3 weeks of compositing (9 October 2018) at the initiation of the bioassays. All elutriate toxicity testing used a freshly prepared elutriate (aged <24-h).

3.1 Elutriate bioassay: *Americamysis bahia* (96-h method)

Water quality parameters (Appendix D. Elutriate bioassay water quality parameters) were within the acceptability ranges specified by testing guidance (US EPA / US ACE 1991, 1998, 2003). Survival in the laboratory performance control (96%) met the $\geq 90\%$ requirement (Table 2). The LC50 value for the KCl reference toxicity test conducted on 29 October 2018 was 0.61 (0.55 – 0.69) g/L. This value was within two standard deviations around the mean LC50 values from ERDC control chart data (0.40 – 0.82 g/L). This indicates that the test organisms were within the historic sensitivity range.

Survival was at least 86% (range: 86 – 100%) in all eleven site waters (Table 2). Survival in the undiluted (100%) elutriates ranged from 25 to 94% (Table 2). Survival was both reduced by at least 10% and statistically significantly different (by one-tailed t-test) for NMP-1, -4, -7, and -8. There was no acute toxicity observed in the other elutriates.

For elutriates in which significant mortality was observed, multiple treatment comparisons using Dunnett's test were performed to determine NOEC and LOEC values, which are summarized in Table 3. Mortality was only high enough in NMP-1 and NMP-7 to calculate LC50 values; the LC50 values for NMP-1 and NMP-7 were 89 and 79%, respectively.

Total ammonia-N concentrations in the undiluted elutriates ranged from 1.4 to 20.7 mg/L and calculated un-ionized concentrations (0.08 to 1.11 mg/L). The ammonia-N and un-ionized ammonia concentrations and comparison to known toxicity thresholds (Kennedy et al 2015, Melby et al 2018) are summarized in Table 4. Since some of the ammonia levels were well above concentrations that are known to cause acute effects to this organism, there is a strong line of evidence that ammonia was high enough to cause mortality in all of the elutriates where acute toxicity was observed (NMP-1, -4, -7, and -8).

The *A. bahia* elutriate bioassay did not indicate acute toxicity for the 7 of the 11 tested sediment elutriates (NMP-2, -3, -5, -6, -9, -10, and -11). Statistically significant acute toxicity was determined for NMP-1, -4, -7, -8.

3.2 Elutriate bioassay: *Menidia beryllina*

Water quality parameters (Appendix D. Elutriate bioassay water quality parameters) were within the acceptability ranges specified by testing guidance (US EPA / US ACE 1991, 1998, 2003). Survival in the laboratory performance control (98%) met the $\geq 90\%$ requirement (Table 2). The LC50 value for the KCl reference toxicity test conducted on 29 October 2018 was 1.46 (1.34 – 1.59) g/L. This value was within two standard deviations around the mean LC50 values from ERDC control chart data (1.07 – 1.52 g/L). This indicates that the test organisms were within the historic sensitivity range.

Survival was at least 94% (range: 94 – 100%) in all eleven site waters (Table 2). Survival in the undiluted (100%) elutriates ranged from 0 to 100%. Survival was both reduced by at least 10% and statistically significantly different (by one-tailed t-test) for NMP-1, -4, -6, -7, -8, -10, and -11. There was no acute toxicity observed in the other elutriates.

For elutriates in which significant mortality was observed, multiple treatment comparisons using Dunnett's test were performed to determine NOEC and LOEC values, which are summarized in Table 3. Mortality was only high enough in NMP-1, - 6, and -7 to calculate LC50 values; the LC50 values for NMP-1, - 6, and -7 were 88, 95 and 59%, respectively.

Total ammonia-N concentrations in the undiluted elutriates ranged from 1.29 to 23.5 mg/L and calculated un-ionized concentrations (0.08 to 1.11 mg/L). The ammonia concentrations and comparison to known toxicity thresholds (Kennedy et al 2015, Melby et al 2018) are summarized in Table 4. Since some of the ammonia levels were well above concentrations that are known to cause acute effects to this organism, there is a strong line of evidence that ammonia was high enough to cause mortality in all of the elutriates where acute toxicity was observed (NMP-1, -4, -6, -7, -8, -11).

The *M. beryllina* elutriate bioassay did not indicate acute toxicity for the 5 of the 11 tested elutriates (NMP-2, -3, -5, -9). Statistically significant acute toxicity was determined for NMP-1, -4, -6, -7, -8, -10 and -11.

3.3 Ammonia Toxicity Background

Ammonia is an important contaminant to consider in toxicity bioassays, especially when employing fish species (USEPA 1989, 1999, 2009) or embryo development tests (Kennedy et al. 2015). The unionized fraction of ammonia, which is dependent on water temperature, pH and to a lesser extent salinity, is often most responsible for causing toxicity in elutriate testing (Kennedy et al., 2015).

Based on LC50 ranges for *A. bahia* (0.23 – 1.7 mg/L UIA) at similar temperatures and pH values taken from the literature (Miller et al 1990; Boardman et al., 2004; Kennedy et al 2015) and a NOEC value reported in Melby et al (2018) of 0.5 mg/L un-ionized ammonia, the un-ionized concentrations in the NMP-1, -4, and -7 elutriates were sufficiently high to cause toxicity. The NMP-5, -6, -8, -10, and -11 elutriates had elevated ammonia which may have caused some mortality.

Based on LC50 ranges for *M. beryllina* (0.75 – 1.94 mg/L UIA) taken from the literature (Boardman et al 2004, Miller et al 1990, Li 1997, Kennedy et al 2015) and NOEC values reported in Melby et al (2018) of 0.6 mg/L un-ionized ammonia, the un-ionized concentrations in the NMP-1, -4, and -7 elutriates were sufficiently high to cause toxicity. The NMP-5, -6, -8, -10 and -11 elutriates had elevated ammonia which may have caused some mortality.

in all of the elutriates in which acute toxicity was observed were high enough to cause mortality to the test organisms based on literature reported values for ammonia toxicity (Melby et al., 2018). Therefore, there is a line of evidence that ammonia was an important determinant of the toxicity observed in both test organisms.

Table 2. Elutriate toxicity results.

Percent survival data presented as means and one standard deviation. Indication of 10% reduction and statistical significance between the 100% elutriate and control/dilution by t-test is provided (yes/no). Statistical significance in multiple comparisons is indicated by an asterisk and boldface.

Sediment Elutriate	Treatment	96-h <i>Americamysis</i> (%)	Reduced > 10%?	Stat Sig?	96-h <i>Menidia</i> (%)	Reduced > 10%?	Stat Sig?
Control	NA	96 ± 9	--	--	98 ± 4	--	
HSC-NMP-1	Site water	91 ± 6	--	--	100 ± 0	--	
	10%	92 ± 4	No	--	96 ± 5	No	--
	50%	86 ± 11	No	--	96 ± 9	No	--
	100%	40 ± 22*	Yes	Yes	38 ± 22*	Yes	Yes
HSC-NMP-2	Site water	100 ± 0	No	--	94 ± 5	No	--
	10%	100 ± 0	No	--	98 ± 4	No	--
	50%	94 ± 5	No	--	100 ± 0	No	--
	100%	94 ± 9	No	--	94 ± 9	No	--
HSC-NMP-3	Site water	96 ± 5	--	--	100 ± 0	--	--
	100%	94 ± 9	No	--	100 ± 0	No	--
HSC-NMP-4	Site water	92 ± 8	--	--	96 ± 5	--	--
	10%	98 ± 4	No	--	98 ± 4	No	--
	50%	90 ± 7	No	--	92 ± 8	No	--
	100%	64 ± 15*	Yes	Yes	60 ± 19*	Yes	Yes
HSC-NMP-5	Site water	96 ± 9	--	--	100 ± 0	No	--
	10%	98 ± 4	No	--	90 ± 10	No	--
	50%	86 ± 15	No	--	96 ± 9	No	--
	100%	88 ± 4	No	--	96 ± 5	No	--
HSC-NMP-6	Site water	86 ± 5	--	--	96 ± 5	No	--
	10%	94 ± 9	No	--	90 ± 12	No	--
	50%	100 ± 0	No	--	90 ± 7	No	--
	100%	90 ± 7	No	--	46 ± 5*	Yes	Yes
HSC-NMP-7	Site water	86 ± 11	--	--	100 ± 0	--	
	10%	100 ± 0	No	--	98 ± 4	No	--

Sediment Elutriate	Treatment	96-h <i>Americamysis</i> (%)	Reduced > 10%?	Stat Sig?	96-h <i>Menidia</i> (%)	Reduced > 10%?	Stat Sig?
HSC-NMP-8	50%	96 ± 5	No	--	82 ± 4*	Yes	Yes
	100%	25 ± 16*	Yes	Yes	0 ± 0*	Yes	Yes
	Site water	94 ± 5	--	--	98 ± 4	No	--
	10%	98 ± 4	No	--	94 ± 5	No	--
	50%	92 ± 8	No	--	98 ± 4	No	--
	100%	70 ± 10*	Yes	Yes	60 ± 16*	Yes	Yes
HSC-NMP-9	Site water	94 ± 13	--	--	96 ± 5	No	--
	10%	92 ± 8	No	--	94 ± 5	No	--
	50%	90 ± 7	No	--	90 ± 12	No	--
	100%	94 ± 5	No	--	98 ± 4	No	--
HSC-NMP-10	Site water	94 ± 5	--	--	100 ± 0	No	--
	10%	96 ± 5	No	--	94 ± 5	No	--
	50%	94 ± 5	No	--	100 ± 0	No	--
	100%	88 ± 13	No	--	71 ± 12*	Yes	Yes
HSC-NMP-11	Site water	86 ± 11	--	--	100 ± 0	No	--
	10%	96 ± 5	No	--	94 ± 8	No	--
	50%	100 ± 0	No	--	98 ± 4	No	--
	100%	84 ± 9	Yes	Yes	54 ± 9*	Yes	Yes

Table 3. Summary of toxicity reference values.

Sample	Endpoint	96-h	96-h
		<i>Americamysis bahia</i>	<i>Menidia beryllina</i>
HSC-NMP-1	NOEC	50	50
	LOEC	100	100
	LC50	89 (75 – 105)	88 (77 – 100)
HSC-NMP-2	NOEC	100	100
	LOEC	NA (1)	NA (1)
	LC50	NA (1)	NA (1)
HSC-NMP-3	NOEC	100	100
	LOEC	NA (1)	NA (1)
	LC50	NA (1)	NA (1)
HSC-NMP-4	NOEC	50	50
	LOEC	100	100
	LC50	NA (1)	NA (1)
HSC-NMP-5	NOEC	100	100
	LOEC	NA (1)	NA (1)
	LC50	NA (1)	NA (1)
HSC-NMP-6	NOEC	100	50
	LOEC	NA (1)	100
	LC50	NA (1)	95 (78 – 117)
HSC-NMP-7	NOEC	50	10
	LOEC	100	50
	LC50	79 (73 – 86)	59 (52 – 66)
HSC-NMP-8	NOEC	50	50
	LOEC	100	100
	LC50	NA (1)	NA (1)
HSC-NMP-9	NOEC	100	100
	LOEC	NA (1)	NA (1)
	LC50	NA (1)	NA (1)
HSC-NMP-10	NOEC	100	50
	LOEC	NA (1)	100
	LC50	NA (1)	NA (1)
HSC-NMP-11	NOEC	100	50
	LOEC	NA (1)	100
	LC50	NA (1)	NA (1)

Footnotes:

(1) NA = not applicable due to no observed toxicity; LOEC = lowest observed effect concentration; NOEC = no observed effect concentration; LC50 = median lethal concentration

Table 4. Ammonia concentrations in elutriates.Data are presented relative to toxicity reference values for *Americamysis bahia* (A) and *Menidia beryllia* (B).**A.**

Control	Total Ammonia-N, averaged (mg/L)	Initial Un-ionized Ammonia (mg/L)	Final Un-ionized Ammonia (mg/L)	Significant Toxicity?	Un-ionized Ammonia Threshold (mg/L)	Un-ionized Ammonia Threshold Exceeded?
0	<0.5	<0.03	<0.03	--	0.5	No
HSC-NMP-1						
0	0.56	<0.03	0.02	No	0.5	No
10	2.15	0.08	0.07	No	0.5	No
50	9.77	0.52	0.44	No	0.5	Yes
100	18.75	0.92	1.03	Yes	0.5	Yes
HSC-NMP-2						
0	0.57	<0.03	0.02	No	0.5	No
10	0.74	0.03	<0.03	No	0.5	No
50	3.38	0.16	0.13	No	0.5	No
100	7.22	0.44	0.28	No	0.5	No
HSC-NMP-3						
0	<0.5	<0.03	<0.03	No	0.5	No
100	1.38	0.08	0.05	No	0.5	No
HSC-NMP-4						
0	<0.5	<0.03	<0.03	No	0.5	No
10	1.53	0.06	0.06	No	0.5	No
50	6.60	0.34	0.21	No	0.5	No
100	12.55	0.65	0.46	Yes	0.5	Yes
HSC-NMP-5						
0	1.17	<0.03	0.04	No	0.5	No
10	1.21	0.05	0.04	No	0.5	No
50	4.98	0.27	0.18	No	0.5	No
100	9.81	0.53	0.38	No	0.5	Yes

Control	Total Ammonia-N, averaged (mg/L)	Initial Un-ionized Ammonia (mg/L)	Final Un-ionized Ammonia (mg/L)	Significant Toxicity?	Un-ionized Ammonia Threshold (mg/L)	Un-ionized Ammonia Threshold Exceeded?
HSC-NMP-6						
0	<0.5	<0.03	<0.03	No	0.5	No
10	1.37	0.05	0.05	No	0.5	No
50	4.82	0.21	0.18	No	0.5	No
100	10.63	0.52	0.42	No	0.5	Yes
HSC-NMP-7						
0	<0.5	<0.03	<0.03	No	0.5	No
10	2.27	0.09	0.06	No	0.5	No
50	9.68	0.49	0.32	No	0.5	No
100	20.65	1.11	0.86	Yes	0.5	Yes
HSC-NMP-8						
0	<0.5	<0.03	<0.03	No	0.5	No
10	1.48	0.05	0.05	No	0.5	No
50	5.42	0.29	0.14	No	0.5	No
100	10.15	0.62	0.29	Yes	0.5	Yes
HSC-NMP-9						
0	<0.5	<0.03	<0.03	No	0.5	No
10	0.97	0.03	0.03	No	0.5	No
50	3.43	0.16	0.12	No	0.5	No
100	7.89	0.44	0.30	No	0.5	No
HSC-NMP-10						
0	<0.5	<0.03	<0.03	No	0.5	No
10	1.31	0.05	0.04	No	0.5	No
50	6.03	0.30	0.19	No	0.5	No
100	11.50	0.62	0.42	No	0.5	Yes
HSC-NMP-11						
0	<0.5	<0.03	<0.03	No	0.5	No
10	1.31	0.05	0.04	No	0.5	No

Control	Total Ammonia-N, averaged (mg/L)	Initial Un-ionized Ammonia (mg/L)	Final Un-ionized Ammonia (mg/L)	Significant Toxicity?	Un-ionized Ammonia Threshold (mg/L)	Un-ionized Ammonia Threshold Exceeded?
50	5.80	0.30	0.20	No	0.5	No
100	11.70	0.65	0.47	No	0.5	Yes

B.

Control	Total Ammonia-N, averaged	Initial Un-ionized Ammonia (mg/L)	Final Un-ionized Ammonia (mg/L)	Significant Toxicity?	Un-ionized Ammonia Threshold (mg/L)	Un-ionized Ammonia Threshold Exceeded?
0	<0.5	<0.03	<0.03			
HSC-NMP-1						
0	<0.5	<0.03	<0.03	No	0.6	No
10	1.76	0.08	0.07	No	0.6	No
50	8.67	0.52	0.46	No	0.6	No
100	16.75	0.92	1.06	Yes	0.6	Yes
HSC-NMP-2						
0	<0.5	<0.03	<0.03	No	0.6	No
10	0.70	0.03	0.03	No	0.6	No
50	3.17	0.19	0.14	No	0.6	No
100	6.81	0.44	0.36	No	0.6	No
HSC-NMP-3						
0	<0.5	<0.03	<0.03	No	0.6	No
100	1.29	0.08	0.04	No	0.6	No
HSC-NMP-4						
0	<0.5	<0.03	<0.03	No	0.6	No
10	1.30	0.06	0.05	No	0.6	No
50	6.45	0.34	0.30	No	0.6	No
100	12.95	0.65	0.80	Yes	0.6	Yes
HSC-NMP-5						
0	<0.5	<0.03	<0.03	No	0.6	No
10	1.00	0.05	0.03	No	0.6	No

Control	Total Ammonia-N, averaged	Initial Un-ionized Ammonia (mg/L)	Final Un-ionized Ammonia (mg/L)	Significant Toxicity?	Un-ionized Ammonia Threshold (mg/L)	Un-ionized Ammonia Threshold Exceeded?
50	4.51	0.28	0.13	No	0.6	No
100	9.42	0.50	0.34	No	0.6	No
HSC-NMP-6						
0	<0.5	<0.03	<0.03	No	0.6	No
10	1.04	0.05	0.04	No	0.6	No
50	4.26	0.21	0.23	No	0.6	No
100	10.48	0.52	0.65	Yes	0.6	Yes
HSC-NMP-7						
0	<0.5	<0.03	<0.03	No	0.6	No
10	1.87	0.09	0.04	No	0.6	No
50	9.13	0.49	0.30	Yes	0.6	No
100	23.50	1.11		Yes	0.6	Yes
HSC-NMP-8						
0	<0.5	<0.03	<0.03	No	0.6	No
10	1.08	0.05	0.03	No	0.6	No
50	5.06	0.29	0.13	No	0.6	No
100	10.62	0.62	0.39	Yes	0.6	Yes
HSC-NMP-9						
0	<0.5	<0.03	<0.03	No	0.6	No
10	0.80	0.03	0.02	No	0.6	No
50	3.16	0.16	0.10	No	0.6	No
100	7.90	0.44	0.28	No	0.6	No
HSC-NMP-10						
0	<0.5	<0.03	<0.03	No	0.6	No
10	1.14	0.05	0.04	No	0.6	No
50	5.52	0.30	0.24	No	0.6	No
100	11.24	0.62	0.65	Yes	0.6	Yes
HSC-NMP-11						

Control	Total Ammonia-N, averaged	Initial Un-ionized Ammonia (mg/L)	Final Un-ionized Ammonia (mg/L)	Significant Toxicity?	Un-ionized Ammonia Threshold (mg/L)	Un-ionized Ammonia Threshold Exceeded?
0	<0.5	<0.03	<0.03	No	0.6	No
10	1.18	0.05	0.03	No	0.6	No
50	5.34	0.30	0.17	No	0.6	No
100	11.31	0.65	0.45	Yes	0.6	Yes

Ammonia values represent the mean between test initiation and termination. Un-ionized ammonia calculated from the measured pH, temperature and salinity in test water.

4 References

Boardman GD, Starbuck SM, Hudgins DB, Li X, Kuhn DD. 2004. Toxicity of ammonia to three marine fish and three marine invertebrates. *Environmental Toxicology* 19:134-142.

Kennedy AJ, Lotufo GR, Steevens JA. 2015. Review of Dredging Elutriate Application Factors: Relevance to Acute-to-Chronic Protection, Contaminant, and Endpoint Specificity," [ERDC/EL TR-15-10](#), U.S. Army Engineer Research and Development Center, Vicksburg, MS. <http://el.erdc.usace.army.mil/elpubs/pdf/trel15-10.pdf>.

Li X. 1997. The toxicity of ammonia to Atlantic silverside (*Menidia menidia*) and ghost shrimp (*Palaemonetes pugio*). M.S. Thesis, Virginia Tech.

Melby N, Kennedy AJ, Farrar JD, Bednar AJ, Moore D, Lehmann W. 2018. Toxicity reduction (and identification) for dredging evaluations: methods for sediment elutriate bioassays. TN-DOER-R26. U.S. Army Research and Development Center, Vicksburg, MS. <https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/7860/>

Miller DC, Poucher S, Cardin JA, Hansen D. 1990. The acute and chronic toxicity of ammonia to marine fish and a mysid. *Archives of Environmental Contamination and Toxicology* 19:40-48.

US Environmental Protection Agency (US EPA). 1999. *1999 update of ambient water quality criteria for ammonia*. EPA/822/R-99/014. US Environmental Protection Agency, Washington, DC.

US Environmental Protection Agency (EPA). 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 4th edition. EPA-821-R-02-012, Office of Water, Washington, D.C.

US Environmental Protection Agency (US EPA). 2009. *Draft 2009 update: Aquatic life ambient water quality criteria for ammonia – freshwater*. EPA/822/D-09/0001. US Environmental Protection Agency, Washington, DC.

US Environmental Protection Agency (US EPA)/Army Corps of Engineers (ACE), 1998. Evaluation of Material Proposed for Discharge to Waters of the US –Testing Manual (Inland Testing Manual). EPA/823/B-98/004. US Environmental Protection Agency, Washington, DC.

US Environmental Protection Agency (US EPA)/Army Corps of Engineers (ACE), 2003. Regional Implementation Agreement for Testing and Reporting Requirements for Ocean Disposal of Dredged Material Off the Louisiana and Texas Coasts Under Section 103 of the Marine Protection, Research and Sanctuaries Act.

US Army Corps of Engineers (USACE). 2003. Evaluation of Dredged Material Proposed for Disposal at Island, Nearshore, or Upland Confined Disposal Facilities – Testing Manual. ERDC/EL TR-03-1, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199.
<http://www.dtic.mil/docs/citations/ADA422448>

5 Appendices

5.1 Appendix A. Sediment Compositing Log

Houston Ship Channel Section 103
Sediment Composite Log

Houston Ship Channel Section 103
Sediment Composite Log

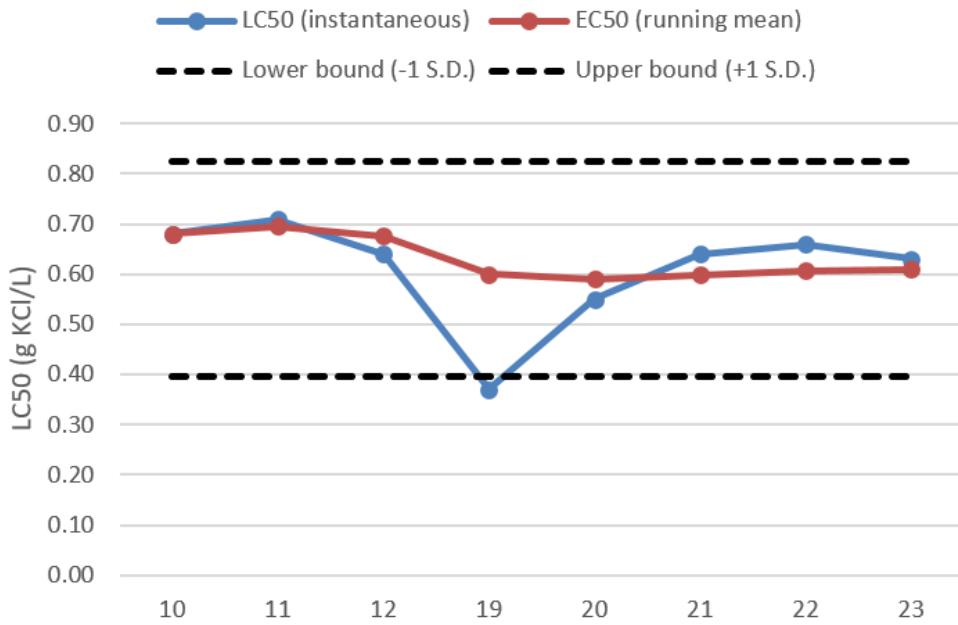
Houston Ship Channel Section 103
Sediment Composite Log

Houston Ship Channel Section 103
Sediment Composite Log

Houston Ship Channel Improvement Sediment Composite Log

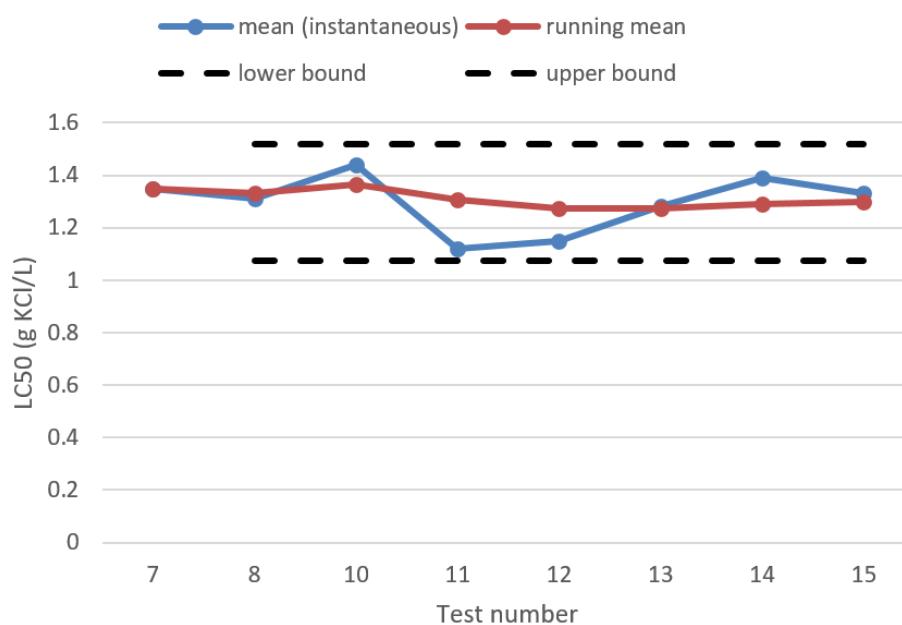
5.2 Appendix B. Sediment Wet-Dry Ratios

Sample Name	Pan #	Pan Weight (g)	Pan+sediment wet weight (g)	Pan+sediment dry weight (g)	Wet Weight (g)	Dry Weight (g)	% Dry	Dry/Wet Ratio	Mean % Moisture	Mean % Dry	Mean Dry/Wet Ratio
NMP-01	1	1.32	2.6	1.966	1.28	0.646	50.5%	0.505	50.7%	49.3%	0.493
	2	1.315	2.419	1.865	1.104	0.55	49.8%	0.498			
	3	1.316	2.425	1.845	1.109	0.529	47.7%	0.477			
NMP-02	4	1.315	2.892	2.575	1.577	1.26	79.9%	0.799	21.0%	79.0%	0.790
	5	1.319	2.362	2.136	1.043	0.817	78.3%	0.783			
	6	1.32	2.657	2.375	1.337	1.055	78.9%	0.789			
NMP-03	7	1.317	2.481	2.288	1.164	0.971	83.4%	0.834	17.8%	82.2%	0.822
	8	1.33	2.581	2.357	1.251	1.027	82.1%	0.821			
	9	1.323	2.592	2.351	1.269	1.028	81.0%	0.810			
NMP-03-DUP	10	1.317	2.541	2.268	1.224	0.951	77.7%	0.777	22.1%	77.9%	0.779
	11	1.323	2.581	2.313	1.258	0.99	78.7%	0.787			
	12	1.326	2.6	2.31	1.274	0.984	77.2%	0.772			
NMP-04	13	1.325	2.841	2.276	1.516	0.951	62.7%	0.627	36.6%	63.4%	0.634
	14	1.327	2.657	2.155	1.33	0.828	62.3%	0.623			
	15	1.324	2.611	2.164	1.287	0.84	65.3%	0.653			
NMP-05	16	1.319	2.895	2.386	1.576	1.067	67.7%	0.677	41.6%	58.4%	0.584


Sample Name	Pan #	Pan Weight (g)	Pan+sediment wet weight (g)	Pan+sediment dry weight (g)	Wet Weight (g)	Dry Weight (g)	% Dry	Dry/Wet Ratio	Mean % Moisture	Mean % Dry	Mean Dry/Wet Ratio
	17	1.318	2.583	1.991	1.265	0.673	53.2%	0.532			
	18	1.323	2.617	2.026	1.294	0.703	54.3%	0.543			
NMP-06	19	1.323	2.766	2.31	1.443	0.987	68.4%	0.684	34.3%	65.7%	0.657
	20	1.318	2.838	2.336	1.52	1.018	67.0%	0.670			
	21	1.329	2.726	2.19	1.397	0.861	61.6%	0.616			
NMP-07	22	1.317	2.884	2.383	1.567	1.066	68.0%	0.680	31.8%	68.2%	0.682
	23	1.316	2.835	2.356	1.519	1.04	68.5%	0.685			
	24	1.32	2.662	2.233	1.342	0.913	68.0%	0.680			
NMP-08	25	1.323	2.559	2.156	1.236	0.833	67.4%	0.674	31.9%	68.1%	0.681
	26	1.332	2.5	2.137	1.168	0.805	68.9%	0.689			
	27	1.325	2.66	2.233	1.335	0.908	68.0%	0.680			
NMP-09	28	1.323	2.792	2.268	1.469	0.945	64.3%	0.643	35.3%	64.7%	0.647
	29	1.325	2.515	2.125	1.19	0.8	67.2%	0.672			
	30	1.322	2.712	2.191	1.39	0.869	62.5%	0.625			
NMP-10	31	1.322	2.735	2.255	1.413	0.933	66.0%	0.660	32.7%	67.3%	0.673
	32	1.319	2.865	2.361	1.546	1.042	67.4%	0.674			
	33	1.316	2.661	2.238	1.345	0.922	68.6%	0.686			

Sample Name	Pan #	Pan Weight (g)	Pan+sediment wet weight (g)	Pan+sediment dry weight (g)	Wet Weight (g)	Dry Weight (g)	% Dry	Dry/Wet Ratio	Mean % Moisture	Mean % Dry	Mean Dry/Wet Ratio
NMP-11	34	1.316	2.665	2.318	1.349	1.002	74.3%	0.743	25.0%	75.0%	0.750
	35	1.322	2.543	2.25	1.221	0.928	76.0%	0.760			
	36	1.314	2.779	2.409	1.465	1.095	74.7%	0.747			

5.3 Appendix C. Reference Toxicity Test Statistics for Elutriate Exposures


5.3.1 Americamysis bahia (96-h)

Acute Fish Test-48 Hr Survival						
Start Date:	29-Oct-18	Test ID:	1	Sample ID:	KCI	
End Date:		Lab ID:		Sample Type:		
Sample Da		Protocol:	EPAA 91-EPA Acute	Test Species:	MY-Mysidopsis bahia	
Comments						
Conc-gm/L	1	2	3			
Control	1.0000	1.0000	1.0000			
0.0625	1.0000	1.0000	1.0000			
0.125	1.0000	0.8000	1.0000			
0.25	1.0000	1.0000	1.0000			
0.5	0.9000	0.8000	0.9000			
1	0.0000	0.0000	0.0000			
Transform: Arcsin Square Root						
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV% N
Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000 3
0.0625	1.0000	1.0000	1.4186	1.4120	1.4317	0.800 3
0.125	0.9333	0.9333	1.3104	1.1071	1.4120	13.432 3
0.25	1.0000	1.0000	1.4120	1.4120	1.4120	0.000 3
0.5	0.8667	0.8667	1.2017	1.1071	1.2490	6.817 3
1	0.0000	0.0000	0.1588	0.1588	0.1588	0.000 3
						30 30
Auxiliary Tests						
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)				Statistic	Critical	Skew Kurt
Equality of variance cannot be confirmed				0.807836	0.835	-1.4381 3.796089
Trimmed Spearman-Karber						
Trim Level	EC50	95% CL				
0.0%	0.6156	0.5529 0.6854				
5.0%	0.6547	0.5934 0.7224				
10.0%	0.6675	0.5857 0.7608				
20.0%	0.6704	0.6331 0.7099				
Auto-0.0%	0.6156	0.5529 0.6854				

5.3.2 Menidia beryllina

Acute Fish Test-96 Hr Survival						
Start Date:	10/29/2018	Test ID:	1	Sample ID:	KCl	
End Date:	11/2/2018	Lab ID:		Sample Type:		
Sample Da		Protocol:	EPA 91-EPA Acute	Test Species:	MB-Menidia beryllina	
Comments						
Conc-gm/L	1	2	3			
Control	1.0000	1.0000	1.0000			
0.125	1.0000	1.0000	1.0000			
0.25	1.0000	0.6000	0.9000			
0.5	0.9000	1.0000	1.0000			
1	0.9091	0.8000	1.0000			
2	0.3000	0.1000	0.1000			
Transform: Arcsin Square Root						
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV% N
Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000 3
0.125	1.0000	1.0000	1.4145	1.4120	1.4195	0.304 3
0.25	0.8333	0.8333	1.1824	0.8861	1.4120	22.770 3
0.5	0.9667	0.9667	1.3577	1.2490	1.4120	6.930 3
1	0.9030	0.9030	1.2612	1.1071	1.4120	12.088 3
2	0.1667	0.1667	0.4077	0.3218	0.5796	36.519 3
						25 30
Auxiliary Tests						
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)				0.947157	0.858	-0.39923 1.184292
Equality of variance cannot be confirmed						
Trimmed Spearman-Karber						
Trim Level	EC50	95% CL				
0.0%						
5.0%						
10.0%						
20.0%	1.4602	1.3427	1.5879			
Auto-16.7%	1.4602	1.3427	1.5879			

5.4 Appendix D. Elutriate bioassay water quality parameters

Table E1. Water quality parameters for 96-hour *Americamysis bahia* bioassay. Means and one standard deviation from the mean are indicated, with the minimum and maximum range of the data provided in parentheses.

Sediment Elutriate	Conc.	Temperature (° C)	Salinity (‰)	pH (SU)	Dissolved oxygen (mg/L)
Control	N/A	20.7 ± 0.2 (20.6 - 21.1)	30.3 ± 0.2 (30.1 - 30.5)	7.80 ± 0.07 (7.73 - 7.91)	6.5 ± 0.5 (6.2 - 7.4)
HSC-NMP-1	0%	20.3 ± 0.6 (19.7 - 21.4)	30.8 ± 0.8 (30.0 - 31.7)	7.86 ± 0.07 (7.75 - 7.95)	6.6 ± 0.7 (5.9 - 7.8)
	10%	20.8 ± 0.5 (20.3 - 21.6)	30.2 ± 0.2 (30.1 - 30.6)	7.86 ± 0.06 (7.78 - 7.94)	6.5 ± 0.7 (6.0 - 7.6)
	50%	20.7 ± 0.4 (20.2 - 21.3)	30.1 ± 0.3 (29.8 - 30.5)	7.99 ± 0.05 (7.91 - 8.02)	6.7 ± 0.6 (6.1 - 7.6)
	100%	20.3 ± 0.7 (19.6 - 21.2)	29.5 ± 0.3 (29.3 - 30.1)	8.05 ± 0.08 (7.93 - 8.13)	6.6 ± 0.7 (6.0 - 7.8)
HSC-NMP-2	0%	20.9 ± 0.9 (19.3 - 21.7)	29.9 ± 0.2 (29.7 - 30.1)	7.92 ± 0.05 (7.84 - 7.98)	6.2 ± 0.9 (5.5 - 7.8)
	10%	21.0 ± 0.4 (20.3 - 21.4)	30.5 ± 0.3 (30.1 - 30.9)	7.87 ± 0.04 (7.83 - 7.93)	6.4 ± 0.7 (6.0 - 7.6)
	50%	20.9 ± 0.5 (20.2 - 21.4)	29.9 ± 0.3 (29.6 - 30.4)	7.93 ± 0.05 (7.90 - 8.02)	6.4 ± 0.7 (5.9 - 7.6)
	100%	20.6 ± 0.6 (19.6 - 21.1)	29.6 ± 0.4 (29.2 - 30.2)	8.01 ± 0.04 (7.97 - 8.08)	6.5 ± 0.7 (6.0 - 7.7)
HSC-NMP-3	0%	20.2 ± 0.5 (19.3 - 20.6)	29.5 ± 0.5 (29.1 - 30.3)	7.92 ± 0.07 (7.87 - 8.04)	6.7 ± 0.7 (6.2 - 8.0)
	100%	20.1 ± 0.3 (19.6 - 20.3)	30.4 ± 0.6 (29.9 - 31.2)	7.97 ± 0.07 (7.92 - 8.10)	6.7 ± 0.6 (6.1 - 7.7)
HSC-NMP-4	0%	20.0 ± 0.3 (19.5 - 20.3)	30.5 ± 0.4 (30.2 - 31.1)	7.93 ± 0.04 (7.88 - 7.99)	6.6 ± 0.6 (6.2 - 7.6)
	10%	20.2 ± 0.2 (20.0 - 20.4)	30.5 ± 0.4 (30.2 - 31.2)	7.85 ± 0.07 (7.77 - 7.93)	6.5 ± 0.6 (6.0 - 7.5)
	50%	20.0 ± 0.4 (19.6 - 20.4)	30.2 ± 0.3 (29.8 - 30.6)	7.92 ± 0.04 (7.89 - 7.98)	6.6 ± 0.5 (6.2 - 7.5)
	100%	19.8 ± 0.4 (19.4 - 20.4)	30.5 ± 0.6 (29.7 - 31.2)	7.97 ± 0.03 (7.92 - 8.00)	6.5 ± 0.3 (6.2 - 7.0)
HSC-NMP-5	0%	19.9 ± 0.6 (19.2 - 20.5)	30.2 ± 0.3 (29.9 - 30.5)	7.93 ± 0.03 (7.90 - 7.97)	6.5 ± 1.0 (5.5 - 8.1)
	10%	20.2 ± 0.5 (19.3 - 20.6)	30.6 ± 0.4 (30.2 - 31.1)	7.86 ± 0.04 (7.84 - 7.94)	6.6 ± 0.7 (6.1 - 7.8)
	50%	20.1 ± 0.4 (19.5 - 20.3)	30.3 ± 0.2 (30.1 - 30.7)	7.95 ± 0.05 (7.91 - 8.04)	6.6 ± 0.7 (6.2 - 7.8)
	100%	19.9 ± 0.3 (19.5 - 20.2)	30.3 ± 0.3 (29.9 - 30.6)	7.99 ± 0.04 (7.94 - 8.04)	6.6 ± 0.6 (6.1 - 7.7)

Sediment Elutriate	Conc.	Temperature (° C)	Salinity (‰)	pH (SU)	Dissolved oxygen (mg/L)
HSC-NMP-6	0%	19.9 ± 0.4 (19.4 - 20.4)	30.2 ± 0.3 (29.8 - 30.4)	7.96 ± 0.02 (7.93 - 7.99)	6.8 ± 1 (6.0 - 8.5)
	10%	20.3 ± 0.4 (19.6 - 20.7)	30.6 ± 0.3 (30.3 - 31.2)	7.85 ± 0.05 (7.82 - 7.93)	6.6 ± 0.4 (6.2 - 7.3)
	50%	20.2 ± 0.4 (19.6 - 20.5)	31.9 ± 0.3 (31.5 - 32.3)	7.92 ± 0.03 (7.90 - 7.97)	6.6 ± 0.4 (6.3 - 7.3)
	100%	20 ± 0.4 (19.6 - 20.5)	33.0 ± 0.2 (32.9 - 33.4)	7.97 ± 0.03 (7.92 - 8.00)	6.4 ± 0.7 (5.8 - 7.6)
HSC-NMP-7	0%	19.8 ± 0.5 (19.0 - 20.5)	29.9 ± 0.6 (29.5 - 30.8)	7.95 ± 0.05 (7.87 - 8.01)	6.8 ± 0.8 (6.0 - 8.2)
	10%	19.7 ± 0.5 (19.0 - 20.5)	30.4 ± 0.5 (30.0 - 31.2)	7.89 ± 0.08 (7.82 - 8.02)	6.6 ± 0.6 (6.0 - 7.5)
	50%	19.7 ± 0.5 (19.0 - 20.3)	30.2 ± 0.6 (29.7 - 31.2)	7.95 ± 0.03 (7.93 - 8.00)	6.7 ± 0.5 (6.3 - 7.6)
	100%	19.7 ± 0.5 (19.0 - 20.3)	30.1 ± 0.3 (29.8 - 30.5)	7.98 ± 0.11 (7.79 - 8.05)	6.6 ± 0.6 (6.2 - 7.6)
HSC-NMP-8	0%	19.5 ± 0.3 (19.0 - 19.9)	30.0 ± 0.6 (29.5 - 30.8)	7.95 ± 0.05 (7.91 - 8.04)	6.9 ± 0.9 (6.3 - 8.5)
	10%	19.7 ± 0.5 (19.0 - 20.3)	30.6 ± 0.7 (30.1 - 31.8)	7.83 ± 0.05 (7.79 - 7.92)	6.7 ± 0.5 (6.2 - 7.6)
	50%	19.7 ± 0.4 (19.0 - 20.1)	30.4 ± 0.7 (29.9 - 31.4)	7.90 ± 0.06 (7.85 - 8.00)	6.7 ± 0.5 (6.2 - 7.6)
	100%	19.6 ± 0.3 (19.0 - 19.9)	30.4 ± 0.8 (29.6 - 31.3)	7.96 ± 0.06 (7.89 - 8.06)	6.7 ± 0.5 (6.2 - 7.5)
HSC-NMP-9	0%	20.2 ± 0.4 (19.5 - 20.6)	29.8 ± 0.3 (29.6 - 30.2)	7.96 ± 0.03 (7.93 - 8.00)	6.5 ± 0.8 (5.9 - 7.9)
	10%	20.4 ± 0.3 (20.0 - 20.7)	30.4 ± 0.2 (30.1 - 30.7)	7.85 ± 0.04 (7.82 - 7.91)	6.5 ± 0.6 (6.0 - 7.5)
	50%	20.3 ± 0.2 (19.9 - 20.5)	30.1 ± 0.2 (29.9 - 30.5)	7.91 ± 0.07 (7.81 - 8.00)	6.4 ± 0.8 (5.3 - 7.6)
	100%	19.9 ± 0.3 (19.6 - 20.2)	30.0 ± 0.3 (29.6 - 30.4)	8.00 ± 0.03 (7.97 - 8.05)	6.6 ± 0.7 (6.2 - 7.8)
HSC-NMP-10	0%	19.9 ± 0.3 (19.4 - 20.2)	29.7 ± 0.2 (29.5 - 30.0)	7.95 ± 0.04 (7.92 - 8.02)	6.5 ± 0.9 (5.8 - 7.9)
	10%	20.0 ± 0.4 (19.4 - 20.4)	30.5 ± 0.3 (30.2 - 30.9)	7.86 ± 0.05 (7.81 - 7.93)	6.7 ± 0.5 (6.2 - 7.5)
	50%	20.0 ± 0.4 (19.4 - 20.4)	30.3 ± 0.3 (30.1 - 30.8)	7.91 ± 0.05 (7.87 - 7.99)	6.5 ± 0.7 (6.0 - 7.6)
	100%	19.9 ± 0.3 (19.5 - 20.2)	30.2 ± 0.2 (30.1 - 30.5)	7.98 ± 0.04 (7.95 - 8.04)	6.5 ± 0.8 (5.7 - 7.7)
HSC-NMP-11	0%	20.0 ± 0.5 (19.3 - 20.5)	30.3 ± 0.3 (30.0 - 30.6)	7.93 ± 0.04 (7.90 - 8.01)	6.7 ± 1.1 (6.0 - 8.5)
	10%	20.2 ± 0.4 (19.6 - 20.6)	30.5 ± 0.4 (30.1 - 30.9)	7.85 ± 0.05 (7.81 - 7.94)	6.5 ± 0.5 (6.2 - 7.4)

Sediment Elutriate	Conc.	Temperature (° C)	Salinity (‰)	pH (SU)	Dissolved oxygen (mg/L)
	50%	20.3 ± 0.3 (19.7 - 20.6)	30.0 ± 0.6 (29.0 - 30.7)	7.93 ± 0.05 (7.90 - 8.02)	6.4 ± 0.6 (6.0 - 7.5)
	100%	20.1 ± 0.3 (19.7 - 20.4)	30.1 ± 0.4 (29.7 - 30.6)	7.99 ± 0.03 (7.96 - 8.04)	6.6 ± 0.5 (6.2 - 7.4)

Table E3. Water quality parameters for 96-hour *Menidia beryllina* bioassay.

Means and one standard deviation from the mean are indicated, with the minimum and maximum range of the data provided in parentheses.

Sediment Elutriate	Conc.	Temperature (° C)	Salinity (‰)	pH (SU)	Dissolved oxygen (mg/L)
Control	N/A	20.8 ± 0.1 (20.7 - 20.9)	30.4 ± 0.2 (30.2 - 30.7)	7.77 ± 0.08 (7.71 - 7.90)	6.3 ± 0.7 (5.7 - 7.5)
HSC-NMP-1	0%	19.7 ± 0.4 (19.2 - 20.2)	30.5 ± 0.5 (30.0 - 31.2)	7.90 ± 0.10 (7.82 - 8.05)	6.7 ± 0.6 (6.2 - 7.8)
	10%	20.0 ± 0.3 (19.7 - 20.3)	30.5 ± 0.4 (30.1 - 31.0)	7.87 ± 0.10 (7.79 - 8.01)	6.6 ± 0.6 (6.2 - 7.6)
	50%	19.9 ± 0.3 (19.5 - 20.3)	30.1 ± 0.2 (29.8 - 30.4)	8.02 ± 0.10 (7.94 - 8.20)	6.5 ± 0.7 (6.0 - 7.6)
	100%	19.8 ± 0.3 (19.5 - 20.2)	29.9 ± 0.4 (29.3 - 30.4)	8.07 ± 0.12 (7.99 - 8.28)	6.6 ± 0.7 (6.1 - 7.8)
HSC-NMP-2	0%	20.2 ± 0.5 (19.3 - 20.7)	30.0 ± 0.1 (29.9 - 30.2)	7.94 ± 0.11 (7.85 - 8.10)	6.5 ± 0.7 (6.0 - 7.8)
	10%	20.4 ± 0.2 (20.2 - 20.7)	30.2 ± 0.5 (29.3 - 30.7)	7.85 ± 0.10 (7.76 - 7.98)	6.5 ± 0.6 (5.9 - 7.6)
	50%	20.5 ± 0.3 (20.2 - 20.9)	29.9 ± 0.2 (29.7 - 30.2)	7.95 ± 0.10 (7.84 - 8.09)	6.5 ± 0.6 (6.2 - 7.6)
	100%	20.5 ± 0.6 (19.6 - 21.1)	29.4 ± 0.1 (29.2 - 29.5)	8.02 ± 0.10 (7.93 - 8.18)	6.5 ± 0.7 (6.0 - 7.7)
HSC-NMP-3	0%	20.1 ± 0.6 (19.3 - 20.6)	29.6 ± 0.3 (29.1 - 29.8)	7.93 ± 0.06 (7.89 - 8.04)	6.5 ± 0.9 (5.8 - 8.0)
	100%	20.2 ± 0.4 (19.6 - 20.5)	30.3 ± 0.3 (29.9 - 30.6)	7.97 ± 0.07 (7.92 - 8.10)	6.4 ± 0.7 (5.9 - 7.7)
HSC-NMP-4	0%	19.9 ± 0.2 (19.5 - 20.1)	30.3 ± 0.1 (30.2 - 30.5)	7.96 ± 0.10 (7.89 - 8.12)	6.5 ± 0.7 (6.0 - 7.8)
	10%	20.1 ± 0.3 (19.8 - 20.4)	30.3 ± 0.1 (30.2 - 30.4)	7.90 ± 0.09 (7.80 - 7.98)	6.4 ± 0.6 (5.9 - 7.5)
	50%	20.1 ± 0.2 (19.9 - 20.5)	30.0 ± 0.7 (28.8 - 30.5)	7.95 ± 0.10 (7.88 - 8.11)	6.4 ± 0.6 (5.9 - 7.5)
	100%	20.1 ± 0.3 (19.7 - 20.5)	29.8 ± 0.1 (29.7 - 30.0)	8.00 ± 0.12 (7.88 - 8.20)	6.1 ± 0.6 (5.7 - 7.0)
HSC-NMP-5	0%	19.6 ± 0.3 (19.2 - 19.9)	30.5 ± 0.3 (30.0 - 30.9)	7.92 ± 0.03 (7.88 - 7.97)	6.6 ± 0.9 (5.8 - 8.1)
	10%	19.9 ± 0.4 (19.4 - 20.5)	30.7 ± 0.4 (30.2 - 31.1)	7.82 ± 0.07 (7.77 - 7.94)	6.6 ± 0.7 (6.0 - 7.8)
	50%	20.0 ± 0.4 (19.8 - 20.8)	30.7 ± 0.4 (30.1 - 31.0)	7.91 ± 0.08 (7.83 - 8.04)	6.5 ± 0.8 (5.7 - 7.8)
	100%	19.9 ± 0.2 (19.7 - 20.1)	30.2 ± 0.3 (29.9 - 30.6)	7.96 ± 0.04 (7.93 - 8.01)	6.3 ± 0.7 (5.9 - 7.7)
HSC-NMP-6	0%	20.1 ± 0.4 (19.4 - 20.4)	30.0 ± 0.1 (29.8 - 30.2)	7.98 ± 0.10 (7.90 - 8.14)	6.7 ± 1.0 (5.9 - 8.5)
	10%	20.2 ± 0.3 (19.8 - 20.7)	30.6 ± 0.1 (30.5 - 30.8)	7.89 ± 0.08 (7.81 - 8.00)	6.6 ± 0.5 (6.0 - 7.3)

Sediment Elutriate	Conc.	Temperature (° C)	Salinity (‰)	pH (SU)	Dissolved oxygen (mg/L)
HSC-NMP-7	50%	20.1 ± 0.4 (19.6 - 20.5)	32.1 ± 0.5 (31.5 - 32.5)	7.92 ± 0.14 (7.75 - 8.12)	6.6 ± 0.4 (6.2 - 7.3)
	100%	20.3 ± 0.4 (19.8 - 20.8)	33.1 ± 0.2 (32.9 - 33.3)	7.97 ± 0.13 (7.83 - 8.18)	6.5 ± 0.6 (6.0 - 7.6)
	0%	19.7 ± 0.3 (19.3 - 20.0)	30.2 ± 0.4 (29.5 - 30.5)	7.90 ± 0.08 (7.77 - 7.98)	6.7 ± 0.8 (6.1 - 8.2)
	10%	20.1 ± 0.3 (19.7 - 20.5)	30.4 ± 0.1 (30.2 - 30.6)	7.85 ± 0.06 (7.80 - 7.92)	6.4 ± 0.7 (5.9 - 7.5)
	50%	20.0 ± 0.2 (19.8 - 20.3)	30.2 ± 0.1 (30.0 - 30.4)	7.96 ± 0.04 (7.92 - 8.00)	6.3 ± 0.7 (6.0 - 7.6)
	100%	20.0 ± 0.3 (19.8 - 20.4)	30.0 ± 0.1 (29.8 - 30.1)	8.00 ± 0.04 (7.95 - 8.04)	6.5 ± 0.7 (5.9 - 7.6)
	0%	19.9 ± 0.4 (19.4 - 20.3)	29.6 ± 0.2 (29.5 - 29.9)	7.93 ± 0.06 (7.89 - 8.04)	6.3 ± 1.2 (5.5 - 8.5)
	10%	20.1 ± 0.3 (19.7 - 20.4)	30.3 ± 0.2 (30.1 - 30.5)	7.82 ± 0.06 (7.77 - 7.92)	6.4 ± 0.7 (5.9 - 7.6)
	50%	20.1 ± 0.3 (19.7 - 20.4)	30.1 ± 0.1 (29.9 - 30.3)	7.91 ± 0.05 (7.88 - 8.00)	6.4 ± 0.7 (5.9 - 7.6)
	100%	20.0 ± 0.3 (19.7 - 20.4)	29.7 ± 0.1 (29.6 - 29.9)	7.99 ± 0.04 (7.95 - 8.06)	6.4 ± 0.6 (6.0 - 7.5)
HSC-NMP-8	0%	19.7 ± 0.2 (19.5 - 20.0)	30.0 ± 0.3 (29.6 - 30.2)	7.94 ± 0.04 (7.9 - 8.00)	6.7 ± 0.8 (5.8 - 7.9)
	10%	20.1 ± 0.4 (19.7 - 20.7)	30.3 ± 0.2 (30.1 - 30.6)	7.81 ± 0.06 (7.77 - 7.91)	6.4 ± 0.6 (6.0 - 7.5)
	50%	20.1 ± 0.4 (19.7 - 20.6)	30.1 ± 0.2 (29.9 - 30.4)	7.90 ± 0.06 (7.87 - 8.00)	6.4 ± 0.6 (6.0 - 7.6)
	100%	19.8 ± 0.2 (19.6 - 20.0)	29.8 ± 0.2 (29.6 - 30.1)	7.98 ± 0.04 (7.95 - 8.05)	6.4 ± 0.8 (5.8 - 7.8)
	0%	20.0 ± 0.6 (19.0 - 20.6)	30.0 ± 0.4 (29.5 - 30.4)	7.98 ± 0.09 (7.91 - 8.13)	6.5 ± 0.9 (5.8 - 7.9)
HSC-NMP-10	10%	20.3 ± 0.3 (19.8 - 20.6)	30.7 ± 0.3 (30.2 - 30.9)	7.86 ± 0.08 (7.79 - 7.96)	6.5 ± 0.6 (5.8 - 7.5)
	50%	20.2 ± 0.3 (19.7 - 20.5)	30.7 ± 0.4 (30.1 - 31.0)	7.92 ± 0.10 (7.84 - 8.07)	6.5 ± 0.7 (5.8 - 7.6)
	100%	20.1 ± 0.4 (19.6 - 20.5)	30.6 ± 0.3 (30.1 - 30.9)	7.99 ± 0.11 (7.89 - 8.16)	6.6 ± 0.7 (5.9 - 7.7)
	0%	20.0 ± 0.5 (19.3 - 20.6)	30.4 ± 0.2 (30.0 - 30.6)	7.92 ± 0.06 (7.85 - 8.01)	6.8 ± 1.0 (6.2 - 8.5)
	10%	20.4 ± 0.4 (19.9 - 20.7)	30.3 ± 0.1 (30.1 - 30.4)	7.83 ± 0.07 (7.77 - 7.94)	6.5 ± 0.5 (6.2 - 7.4)
HSC-NMP-11	50%	20.3 ± 0.3 (19.9 - 20.7)	30.1 ± 0.1 (30.0 - 30.3)	7.91 ± 0.07 (7.84 - 8.02)	6.5 ± 0.6 (5.9 - 7.5)
	100%	20.3 ± 0.3 (20.0 - 20.6)	29.8 ± 0.1 (29.7 - 30.1)	7.98 ± 0.05 (7.92 - 8.04)	6.4 ± 0.6 (5.9 - 7.4)

5.5 Appendix E. Statistical Analyses for Elutriate Toxicity Tests

5.5.1 *Americamysis bahia* (96h)

Acute Fish Test-96 Hr Survival																		
Start Date: 10/29/2018			Test ID: 1		Sample ID: NMP1													
End Date: 11/2/2018			Lab ID:		Sample Type:													
Sample Dat			Protocol: EPAA 91-EPA Acute		Test Species: MY-Mysidopsis bahia													
Comments:																		
Conc-% 1 2 3 4 5																		
Control	1.0000	0.8000	1.0000	1.0000	1.0000													
10	0.9000	0.9000	0.9091	0.9000	1.0000													
50	0.9000	0.9000	0.8000	0.7000	1.0000													
100	0.1000	0.7000	0.3000	0.4000	0.5000													
Transform: Arcsin Square Root																		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD								
Control	0.9600	1.0000	1.3510	1.1071	1.4120	10.092	5											
10	0.9218	0.9602	1.2862	1.2490	1.4195	5.814	5	0.615	2.230	0.2352								
50	0.8600	0.8958	1.2017	0.9912	1.4120	13.288	5	1.416	2.230	0.2352								
*100	0.4000	0.4167	0.6725	0.3218	0.9912	36.881	5	6.434	2.230	0.2352								
Auxiliary Tests																		
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						Statistic	Critical	Skew	Kurt									
Bartlett's Test indicates equal variances (p = 0.19)						4.702851	11.34487											
Hypothesis Test (1-tail, 0.05)																		
Dunnett's Test		NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob								
		50	100	70.71068	2	0.145536	0.152797	0.479437	0.0278	2.9E-05								
										3, 16								

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1			Sample ID:	NMP1			
End Date:	11/2/2018	Lab ID:				Sample Type:				
Sample Date:		Protocol:	EPAA 91-EPA Acute			Test Species:	MY-Mysidopsis bahia			
Comments:										
Conc-%	1	2	3	4	5					
Control	1.0000	0.8000	1.0000	1.0000	1.0000					
10	0.9000	0.9000	0.9091	0.9000	1.0000					
50	0.9000	0.9000	0.8000	0.7000	1.0000					
100	0.1000	0.7000	0.3000	0.4000	0.5000					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Number	Total	
Control	0.9600	1.0000	1.3510	1.1071	1.4120	10.092	5			2 50
10	0.9218	0.9602	1.2862	1.2490	1.4195	5.814	5			4 52
50	0.8600	0.8958	1.2017	0.9912	1.4120	13.288	5			7 50
100	0.4000	0.4167	0.6725	0.3218	0.9912	36.881	5			30 50
Auxiliary Tests										
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						Statistic	Critical	Skew	Kurt	
Bartlett's Test indicates equal variances (p = 0.19)						4.702851	11.34487			
Trimmed Spearman-Karber										
Trim Level	EC50	95% CL								
0.0%										
5.0%										
10.0%										
20.0%										
Auto-41.7%	88.644	74.932	104.864							

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1	Sample ID:		NMP4				
End Date:	11/2/2018	Lab ID:		Sample Type:						
Sample Da		Protocol:	EPA 91-EPA Acute	Test Species:		MY-Mysidopsis bahia				
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	0.8000	1.0000	1.0000	1.0000					
10	1.0000	1.0000	1.0000	1.0000	0.9000					
50	0.9000	0.9000	0.9000	0.8000	1.0000					
100	0.8000	0.4000	0.7000	0.6000	0.7000					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.9600	1.0000	1.3510	1.1071	1.4120	10.092	5			
10	0.9800	1.0208	1.3794	1.2490	1.4120	5.284	5	-0.364	2.230	0.1739
50	0.9000	0.9375	1.2533	1.1071	1.4120	8.613	5	1.254	2.230	0.1739
*100	0.6400	0.6667	0.9321	0.6847	1.1071	17.043	5	5.374	2.230	0.1739
Auxiliary Tests										
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						0.87		0.868		-0.97935 0.734932
Bartlett's Test indicates equal variances (p = 0.53)						2.203017		11.34487		
Hypothesis Test (1-tail, 0.05)										
Dunnett's Test		50	100	70.71068	2	0.099576	0.104544	0.21048	0.015196	1.0E-04 3, 16

Acute Fish Test-90% Survival										
Start Date:	10/29/2018	Test ID:	1	Sample ID:		NMP7				
End Date:	11/2/2018	Lab ID:		Sample Type:						
Sample Da		Protocol:	EPAA 91-EPA Acute	Test Species:		MY-Mysidopsis bahia				
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	0.8000	1.0000	1.0000	1.0000					
100	0.4000	0.3000	0.2000	0.0000	0.3636					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.9600	1.0000	1.3510	1.1071	1.4120	10.092	5			
*100	0.2527	0.2633	0.5068	0.1588	0.6847	41.818	5	7.491	1.860	0.2096
Auxiliary Tests										
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)					Statistic		Critical		Skew	
F-Test indicates equal variances (p = 0.41)					2.416462		23.1545			
Hypothesis Test (1-tail, 0.05)										
Homoscedastic t Test indicates significant differences					MSDu	MSDp	MSB	MSE	F-Prob	df
					0.125752	0.132026	1.781804	0.031754	7.0E-05	1, 8

Acute Fish Test-96 Hr Survival									
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP7			
End Date:	11/2/2018	Lab ID:			Sample Type:				
Sample Da		Protocol:	EPA 91-EPA Acute		Test Species:	MY-Mysidopsis bahia			
Comments									
Conc-%	1	2	3	4	5				
Control	1.0000	0.8000	1.0000	1.0000	1.0000				
10	1.0000	1.0000	1.0000	1.0000	1.0000				
50	0.9000	0.9000	1.0000	1.0000	1.0000				
100	0.4000	0.3000	0.2000	0.0000	0.3636				
Transform: Arcsin Square Root									
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Rank Sum	1-Tailed Critical
Control	0.9600	1.0000	1.3510	1.1071	1.4120	10.092	5		
10	1.0000	1.0417	1.4174	1.4120	1.4317	0.606	5	34.00	17.00
50	0.9600	1.0000	1.3483	1.2490	1.4195	6.725	5	28.00	17.00
*100	0.2527	0.2633	0.5068	0.1588	0.6847	41.818	5	15.00	17.00
Auxiliary Tests									
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)						0.849324		0.868	
Bartlett's Test indicates unequal variances (p = 2.39E-04)						19.28577		11.34487	
Hypothesis Test (1-tail, 0.05)									
NOEC		LOEC		ChV		TU			
Steel's Many-One Rank Test		50		100		70.71068			
						2			

Acute Fish Test-96 Hr Survival									
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP7			
End Date:	11/2/2018	Lab ID:			Sample Type:				
Sample Da		Protocol:	EPAA 91-EPA Acute		Test Species:	MY-Mysidopsis bahia			
Comments									
Conc-%	1	2	3	4	5				
Control	1.0000	0.8000	1.0000	1.0000	1.0000				
10	1.0000	1.0000	1.0000	1.0000	1.0000				
50	0.9000	0.9000	1.0000	1.0000	1.0000				
100	0.4000	0.3000	0.2000	0.0000	0.3636				
Transform: Arcsin Square Root									
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Number	Total
Control	0.9600	1.0000	1.3510	1.1071	1.4120	10.092	5		
10	1.0000	1.0417	1.4174	1.4120	1.4317	0.606	5		
50	0.9600	1.0000	1.3483	1.2490	1.4195	6.725	5		
100	0.2527	0.2633	0.5068	0.1588	0.6847	41.818	5		
								2	50
								0	54
								2	51
								38	51
Auxiliary Tests									
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)					Statistic	Critical		Skew	Kurt
Bartlett's Test indicates unequal variances (p = 2.39E-04)					19.28577	11.34487		-1.5143	2.764851
Trimmed Spearman-Karber									
Trim Level	EC50	95% CL							
0.0%									
5.0%									
10.0%									
20.0%									
Auto-26.0%	79.385	73.295	85.982						

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP8				
End Date:	11/2/2018	Lab ID:			Sample Type:					
Sample Da		Protocol:	EPAA 91-EPA Acute		Test Species:	MY-Mysidopsis bahia				
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	0.8000	1.0000	1.0000	1.0000					
100	0.8000	0.8000	0.6000	0.7000	0.6000					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.9600	1.0000	1.3510	1.1071	1.4120	10.092	5			
*100	0.7000	0.7292	0.9955	0.8861	1.1071	11.106	5	4.529	1.860	0.1460
Auxiliary Tests										
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						0.837438		0.781		-1.16487 0.538173
F-Test indicates equal variances (p = 0.69)						1.520668		23.1545		
Hypothesis Test (1-tail, 0.05)										
Homoscedastic t Test indicates significant differences						0.080382	0.084392	0.315988	0.015406	0.001927 1, 8

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1	Sample ID:		NMP8				
End Date:	11/2/2018	Lab ID:		Sample Type:						
Sample Da		Protocol:	EPA 91-EPA Acute	Test Species:		MY-Mysidopsis bahia				
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	0.8000	1.0000	1.0000	1.0000					
10	0.9000	1.0000	1.0000	1.0000	1.0000					
50	1.0000	1.0000	0.9000	0.8000	0.9000					
100	0.8000	0.8000	0.6000	0.7000	0.6000					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.9600	1.0000	1.3510	1.1071	1.4120	10.092	5			
10	0.9800	1.0208	1.3794	1.2490	1.4120	5.284	5	-0.391	2.230	0.1620
50	0.9200	0.9583	1.2859	1.1071	1.4120	10.026	5	0.898	2.230	0.1620
*100	0.7000	0.7292	0.9955	0.8861	1.1071	11.106	5	4.895	2.230	0.1620
Auxiliary Tests										
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						0.907531	0.868	-0.86509	-0.01526	
Bartlett's Test indicates equal variances (p = 0.69)						1.485858	11.34487			
Hypothesis Test (1-tail, 0.05)			NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE
Dunnett's Test			50	100	70.71068	2	0.091242	0.095794	0.154949	0.013186
										2.6E-04
										3, 16

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP11				
End Date:	11/2/2018	Lab ID:			Sample Type:					
Sample Da		Protocol:	EPAA 91-EPA Acute		Test Species:	MY-Mysidopsis bahia				
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	0.8000	1.0000	1.0000	1.0000					
100	0.8000	1.0000	0.8000	0.8000	0.8000					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.9600	1.0000	1.3510	1.1071	1.4120	10.092	5			
*100	0.8400	0.8750	1.1681	1.1071	1.4120	11.672	5	2.121	1.860	0.1603
Auxiliary Tests										
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						Statistic	Critical		Skew	Kurt
						0.90066	0.781		0	1.40625
F-Test indicates equal variances (p = 1.00)						1	23.1545			
Hypothesis Test (1-tail, 0.05)						MSDu	MSDp	MSB	MSE	F-Prob
Homoscedastic t Test indicates significant differences						0.090133	0.094629	0.08365	0.018589	0.066688
										1, 8

Acute Fish Test-96 Hr Survival									
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP11			
End Date:	11/2/2018	Lab ID:			Sample Type:				
Sample Da		Protocol:	EPA 91-EPA Acute		Test Species:	MY-Mysidopsis bahia			
Comments									
Conc-%	1	2	3	4	5				
Control	1.0000	0.8000	1.0000	1.0000	1.0000				
10	1.0000	1.0000	1.0000	0.9000	0.9000				
50	1.0000	1.0000	1.0000	1.0000	1.0000				
100	0.8000	1.0000	0.8000	0.8000	0.8000				
Transform: Arcsin Square Root						Rank	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical
Control	0.9600	1.0000	1.3510	1.1071	1.4120	10.092	5		
10	0.9600	1.0000	1.3468	1.2490	1.4120	6.628	5	26.00	17.00
50	1.0000	1.0417	1.4120	1.4120	1.4120	0.000	5	30.00	17.00
100	0.8400	0.8750	1.1681	1.1071	1.4120	11.672	5	20.00	17.00
Auxiliary Tests					Statistic	Critical	Skew	Kurt	
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)					0.907738	0.868	-0.06556	2.398115	
Equality of variance cannot be confirmed									
Hypothesis Test (1-tail, 0.05)									
Steel's Many-One Rank Test		100	>100		1				

5.5.2 Menidia beryllina (96h)

Acute Fish Test-96 Hr Survival																	
Start Date:	10/29/2018	Test ID:	1			Sample ID:	NMP1										
End Date:	11/2/2018	Lab ID:			Sample Type:												
Sample Da		Protocol:	EPAA 91-EPA Acute		Test Species:		MB-Menidia beryllina										
Comments																	
Conc-%	1	2	3	4	5												
Control	1.0000	1.0000	1.0000	1.0000	0.9000												
100	0.4000	0.4000	0.1000	0.3000	0.7000												
Transform: Arcsin Square Root																	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	1-Tailed Critical	MSD							
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5										
*100	0.3800	0.3878	0.6524	0.3218	0.9912	36.873	5	6.468	1.860	0.2090							
Auxiliary Tests																	
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)					0.838782		0.781		0.009785								
F-Test indicates equal variances (p = 0.04)					10.89392		23.1545										
Hypothesis Test (1-tail, 0.05)																	
Homoscedastic t Test indicates significant differences					MSDu	MSDp	MSB	MSE	F-Prob	df							
					0.115758	0.120103	1.321413	0.031589	1.9E-04	1, 8							

Acute Fish Test-96 Hr Survival											
Start Date:	10/29/2018	Test ID:	1	Sample ID:		NMP1					
End Date:	11/2/2018	Lab ID:		Sample Type:							
Sample Da		Protocol:	EPAA 91-EPA Acute	Test Species:		MB-Menidia beryllina					
Comments											
Conc-%	1	2	3	4	5						
Control	1.0000	1.0000	1.0000	1.0000	0.9000						
10	1.0000	0.9091	1.0000	0.9000	1.0000						
50	1.0000	1.0000	1.0000	1.0000	0.8000						
100	0.4000	0.4000	0.1000	0.3000	0.7000						
Transform: Arcsin Square Root											
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Rank Sum	1-Tailed Critical		
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5				
10	0.9618	0.9814	1.3499	1.2490	1.4120	6.312	5	25.50	17.00		
50	0.9600	0.9796	1.3510	1.1071	1.4120	10.092	5	27.00	17.00		
*100	0.3800	0.3878	0.6524	0.3218	0.9912	36.873	5	15.00	17.00		
Auxiliary Tests											
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)					Statistic		Critical	Skew			
Bartlett's Test indicates equal variances (p = 0.09)					6.43982		11.34487				
Hypothesis Test (1-tail, 0.05)											
NOEC		LOEC		ChV		TU					
Steel's Many-One Rank Test		50		100		70.71068					

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP810				
End Date:	11/2/2018	Lab ID:			Sample Type:					
Sample Da		Protocol:	EPA 91-EPA Acute			Test Species:	MB-Menidia beryllina			
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	1.0000	1.0000	1.0000	0.9000					
10	1.0000	0.9091	1.0000	0.9000	1.0000					
50	1.0000	1.0000	1.0000	1.0000	0.8000					
100	0.4000	0.4000	0.1000	0.3000	0.7000					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N		Number	Total
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5		1	50
10	0.9618	0.9814	1.3499	1.2490	1.4120	6.312	5		2	51
50	0.9600	0.9796	1.3510	1.1071	1.4120	10.092	5		2	50
100	0.3800	0.3878	0.6524	0.3218	0.9912	36.873	5		31	50
Auxiliary Tests						Statistic	Critical	Skew	Kurt	
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)						0.837015	0.868	-0.32365	2.473952	
Bartlett's Test indicates equal variances (p = 0.09)						6.43982	11.34487			
Trimmed Spearman-Karber										
Trim Level	EC50	95% CL								
0.0%										
5.0%										
10.0%										
20.0%										
Auto-38.8%	87.682	76.909	99.963							

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP4				
End Date:	11/2/2018	Lab ID:			Sample Type:					
Sample Da		Protocol:	EPAA 91-EPA Acute		Test Species:	MB-Menidia beryllina				
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	1.0000	1.0000	1.0000	0.9000					
100	0.3000	0.7000	0.6000	0.6000	0.8000					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5			
*100	0.6000	0.6122	0.8900	0.5796	1.1071	22.027	5	5.232	1.860	0.1739
Auxiliary Tests										
Statistic						Critical		Skew		Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						0.874663		0.781		-1.06083 2.531802
F-Test indicates equal variances (p = 0.08)						7.23571		23.1545		
Hypothesis Test (1-tail, 0.05)										
MSDu						MSB		MSE		F-Prob df
Homoscedastic t Test indicates significant differences						0.091442		0.094875		0.598786 0.021873 7.9E-04 1, 8

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1	Sample ID:		NMP4				
End Date:	11/2/2018	Lab ID:		Sample Type:						
Sample Da		Protocol:	EPAA 91-EPA Acute	Test Species:		MB-Menidia beryllina				
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	1.0000	1.0000	1.0000	0.9000					
10	1.0000	1.0000	1.0000	1.0000	0.9000					
50	1.0000	0.8889	0.8000	1.0000	0.9000					
100	0.3000	0.7000	0.6000	0.6000	0.8000					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5			
10	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5	0.000	2.230	0.1813
50	0.9178	0.9365	1.2822	1.1071	1.4120	10.174	5	1.196	2.230	0.1813
*100	0.6000	0.6122	0.8900	0.5796	1.1071	22.027	5	6.021	2.230	0.1813
Auxiliary Tests										
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						0.915215		0.868		-0.85373 1.578781
Bartlett's Test indicates equal variances (p = 0.17)						5.053465		11.34487		
Hypothesis Test (1-tail, 0.05)										
Dunnett's Test		50	100	70.71068	2	0.096376	0.099993	0.271564	0.016519	3.8E-05 3, 16

Acute Fish Test-96 Hr Survival												
Start Date:	10/29/2018	Test ID:	1	Sample ID:	NMP6							
End Date:	11/2/2018	Lab ID:		Sample Type:								
Sample Da		Protocol:	EPA 91-EPA Acute	Test Species:	MB-Menidia beryllina							
Comments												
Conc-%	1	2	3	4	5							
Control	1.0000	1.0000	1.0000	1.0000	0.9000							
10	0.9000	1.0000	0.7000	0.9000	1.0000							
50	0.8000	1.0000	0.9000	0.9000	0.9000							
100	0.5000	0.5000	0.4000	0.5000	0.4000							
Transform: Arcsin Square Root												
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5					
10	0.9000	0.9184	1.2627	0.9912	1.4120	13.643	5	1.657	2.230	0.1572		
50	0.9000	0.9184	1.2533	1.1071	1.4120	8.613	5	1.790	2.230	0.1572		
*100	0.4600	0.4694	0.7451	0.6847	0.7854	7.401	5	8.999	2.230	0.1572		
Auxiliary Tests												
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						Statistic	Critical		Skew	Kurt		
Bartlett's Test indicates equal variances (p = 0.15)						5.250422	11.34487		-0.8089	1.643597		
Hypothesis Test (1-tail, 0.05)			NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test			50	100	70.71068	2	0.080468	0.083489	0.39917	0.01242	5.3E-07	3, 16

Acute Fish Test-96 Hr Survival							
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP6	
End Date:	11/2/2018	Lab ID:			Sample Type:		
Sample Da		Protocol:	EPA 91-EPA Acute		Test Species:	MB-Menidia beryllina	
Comments							
Conc-%	1	2	3	4	5		
Control	1.0000	1.0000	1.0000	1.0000	0.9000		
10	0.9000	1.0000	0.7000	0.9000	1.0000		
50	0.8000	1.0000	0.9000	0.9000	0.9000		
100	0.5000	0.5000	0.4000	0.5000	0.4000		
Transform: Arcsin Square Root							
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5
10	0.9000	0.9184	1.2627	0.9912	1.4120	13.643	5
50	0.9000	0.9184	1.2533	1.1071	1.4120	8.613	5
100	0.4600	0.4694	0.7451	0.6847	0.7854	7.401	5
Auxiliary Tests				Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)				0.908241	0.868	-0.8089	1.643597
Bartlett's Test indicates equal variances (p = 0.15)				5.250422	11.34487		
Trimmed Spearman-Karber							
Trim Level	EC50	95% CL					
0.0%							
5.0%							
10.0%							
20.0%							
Auto-46.9%	95.384	77.842	116.879				

Acute Fish Test-96 Hr Survival									
Start Date:	10/29/2018	Test ID:	1	Sample ID:	NMP7				
End Date:	11/2/2018	Lab ID:		Sample Type:					
Sample Da		Protocol:	EPA 91-EPA Acute	Test Species:	MB-Menidia beryllina				
Comments									
Conc-%	1	2	3	4	5				
Control	1.0000	1.0000	1.0000	1.0000	0.9000				
10	1.0000	0.9000	1.0000	1.0000	1.0000				
50	0.8182	0.8000	0.8000	0.9000	0.8000				
100	0.0000	0.0000	0.0000	0.0000	0.0000				
Transform: Arcsin Square Root						Rank	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum Critical	
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5		
10	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5	27.50	18.00
*50	0.8236	0.8404	1.1402	1.1071	1.2490	5.411	5	15.50	18.00
100	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	5		
Auxiliary Tests						Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)						0.826411	0.835	-0.92563	0.957313
Bartlett's Test indicates equal variances (p = 0.94)						0.12811	9.21034		
Hypothesis Test (1-tail, 0.05)		NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test		10	50	22.36068	10				

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP7				
End Date:	11/2/2018	Lab ID:			Sample Type:					
Sample Da		Protocol:	EPA 91-EPA Acute		Test Species:	MB-Menidia beryllina				
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	1.0000	1.0000	1.0000	0.9000					
10	1.0000	0.9000	1.0000	1.0000	1.0000					
50	0.8182	0.8000	0.8000	0.9000	0.8000					
100	0.0000	0.0000	0.0000	0.0000	0.0000					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N		Number	Total
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5		1	50
10	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5		1	50
50	0.8236	0.8404	1.1402	1.1071	1.2490	5.411	5		9	51
100	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	5		50	50
Auxiliary Tests										
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)						0.826411		0.835	-0.92563	0.957313
Bartlett's Test indicates equal variances (p = 0.94)						0.12811		9.21034		
Trimmed Spearman-Karber										
Trim Level	EC50	95% CL								
0.0%	58.837	52.283	66.213							
5.0%	62.235	54.100	71.593							
10.0%	64.855	53.768	78.228							
20.0%	66.204	62.954	69.623							
Auto-0.0%	58.837	52.283	66.213							

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP8				
End Date:	11/2/2018	Lab ID:			Sample Type:					
Sample Da		Protocol:	EPA 91-EPA Acute		Test Species:	MB-Menidia beryllina				
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	1.0000	1.0000	1.0000	0.9000					
100	0.5000	0.4000	0.7000	0.8000	0.6000					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5			
*100	0.6000	0.6122	0.8909	0.6847	1.1071	18.654	5	6.020	1.860	0.1509
Auxiliary Tests										
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)					0.943179		0.781		-0.07033	0.257991
F-Test indicates equal variances (p = 0.14)					5.199646		23.1545			
Hypothesis Test (1-tail, 0.05)										
Homoscedastic t Test indicates significant differences					0.076477	0.079348	0.596635	0.016466	3.2E-04	1, 8

Acute Fish Test-96 Hr Survival											
Start Date:	10/29/2018	Test ID:	1	Sample ID:	NMP8						
End Date:	11/2/2018	Lab ID:		Sample Type:							
Sample Da		Protocol:	EPA 91-EPA Acute	Test Species:	MB-Menidia beryllina						
Comments											
Conc-%	1	2	3	4	5						
Control	1.0000	1.0000	1.0000	1.0000	0.9000						
10	0.9000	0.9000	0.9000	1.0000	1.0000						
50	1.0000	1.0000	0.9000	1.0000	1.0000						
100	0.5000	0.4000	0.7000	0.8000	0.6000						
Transform: Arcsin Square Root											
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5				
10	0.9400	0.9592	1.3142	1.2490	1.4120	6.792	5	0.958	2.230	0.1518	
50	0.9800	1.0000	1.3809	1.2490	1.4195	5.343	5	-0.022	2.230	0.1518	
*100	0.6000	0.6122	0.8909	0.6847	1.1071	18.654	5	7.176	2.230	0.1518	
Auxiliary Tests											
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						0.945174		0.868		-0.12156 0.298277	
Bartlett's Test indicates equal variances (p = 0.29)						3.770134		11.34487			
Hypothesis Test (1-tail, 0.05)											
Dunnett's Test		NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
		50	100	70.71068	2	0.077045	0.079937	0.277781	0.011586	3.7E-06	3, 16

Acute Fish Test-96 Hr Survival										
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP810				
End Date:	11/2/2018	Lab ID:			Sample Type:					
Sample Da		Protocol:	EPA 91-EPA Acute		Test Species:	MB-Menidia beryllina				
Comments										
Conc-%	1	2	3	4	5					
Control	1.0000	1.0000	1.0000	1.0000	0.9000					
100	0.7000	0.8000	0.8000	0.5000	0.7273					
Transform: Arcsin Square Root										
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	1-Tailed Critical	MSD
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5			
*100	0.7055	0.7199	1.0024	0.7854	1.1071	13.151	5	5.596	1.860	0.1253
Auxiliary Tests										
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)					Statistic	Critical	Skew	Kurt		
F-Test indicates equal variances (p = 0.28)					0.821652	0.781	-1.37129	1.56812		
Hypothesis Test (1-tail, 0.05)										
Homoscedastic t Test indicates significant differences					MSDu	MSDp	MSB	MSE	F-Prob	df
					0.060779	0.063061	0.355296	0.011346	5.1E-04	1, 8

Acute Fish Test-96 Hr Survival									
Start Date:	10/29/2018	Test ID:	1		Sample ID:	NMP10			
End Date:	11/2/2018	Lab ID:			Sample Type:				
Sample Da		Protocol:	EPAA 91-EPA Acute		Test Species:	MB-Menidia beryllina			
Comments									
Conc-%	1	2	3	4	5				
Control	1.0000	1.0000	1.0000	1.0000	0.9000				
10	0.9000	0.9000	1.0000	1.0000	0.9000				
50	1.0000	1.0000	1.0000	1.0000	1.0000				
100	0.7000	0.8000	0.8000	0.5000	0.7273				
Transform: Arcsin Square Root						Rank	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5		
10	0.9400	0.9592	1.3142	1.2490	1.4120	6.792	5	22.50	17.00
50	1.0000	1.0204	1.4103	1.4033	1.4120	0.275	5	28.00	17.00
*100	0.7055	0.7199	1.0024	0.7854	1.1071	13.151	5	15.00	17.00
Auxiliary Tests						Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)						0.902922	0.868	-1.00983	1.64015
Bartlett's Test indicates unequal variances (p = 1.15E-04)						20.8151	11.34487		
Hypothesis Test (1-tail, 0.05)						TU			
Steel's Many-One Rank Test						50	100	70.71068	2

Acute Fish Test-96 Hr Survival									
Start Date:	10/29/2018	Test ID:	1	Sample ID:	NMP11				
End Date:	11/2/2018	Lab ID:		Sample Type:					
Sample Da		Protocol:	EPAA 91-EPA Acute	Test Species:	MB-Menidia beryllina				
Comments									
Conc-%	1	2	3	4	5				
Control	1.0000	1.0000	1.0000	1.0000	0.9000				
10	1.0000	1.0000	1.0000	0.9000	0.8182				
50	1.0000	1.0000	1.0000	1.0000	0.9000				
100	0.6000	0.4000	0.6000	0.6000	0.5000				
Transform: Arcsin Square Root									
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Rank Sum	1-Tailed Critical
Control	0.9800	1.0000	1.3794	1.2490	1.4120	5.284	5		
10	0.9436	0.9629	1.3231	1.1303	1.4120	9.736	5	24.50	17.00
50	0.9800	1.0000	1.3777	1.2490	1.4120	5.227	5	25.50	17.00
*100	0.5400	0.5510	0.8257	0.6847	0.8861	10.906	5	15.00	17.00
Auxiliary Tests									
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)					Statistic	Critical	Skew	Kurt	
Bartlett's Test indicates equal variances (p = 0.63)					0.821144	0.868	-1.07553	-0.10824	
Hypothesis Test (1-tail, 0.05)									
Steel's Many-One Rank Test		NOEC	LOEC	ChV	TU				
		50	100	70.71068	2				

5.6 Appendix F. Laboratory Photographs

5.6.1 Elutriate preparation

5.6.2 Elutriate bioassays

5.7 Appendix G. Raw Data Sheets for Elutriate Bioassays

YSI 556 Calibration Documentation Sheet			
Date 10-26-18	Serial number 13J100686		
Technician: JMD			
Dissolved Oxygen <i>Air</i>			
Type of Calibration <i>2 Air</i>			
Barometric Pressure <i>755.4</i>			
D.O. Gain <i>0.921145</i>			
D.O. Local Gain <i>1.005952</i>			
Acceptable? Y/N <i>Y</i>			
Conductivity/Salinity			
Type of Calibration <i>3, f</i>			
Conductivity Gain 1.413 ms/cm <i>0.980800</i>	Standard Lot # <i>VX/</i>	Exp. Date <i>03/2019</i>	
Conductivity Gain 12.88 ms/cm <i>0.970185</i>	Standard Lot # <i>9882</i>	Exp. Date <i>03/2021</i>	
Conductivity Gain 50.0 ms/cm <i>1.023561</i>	Standard Lot # <i>18A1000 85</i>	Exp. Date <i>7/31/2019</i>	
Acceptable? Y/N <i>Y</i>			
pH			
Type of Calibration			
pH 7.0 Gain <i>-5.19371</i>	Standard Lot # <i>629606</i>	Exp. Date <i>10/25/19</i>	
pH 7.0 Offset <i>-202.551</i>			
pH 4.01 Gain <i>-5.17765</i>	Standard Lot # <i>6292-20</i>	Exp. Date <i>10/26/19</i>	
pH 4.01 Offset <i>-201.941</i>			
pH 10.0 Gain <i>-5.23508</i>	Standard Lot # <i>CC5Q031</i>	Exp. Date <i>5/25/20</i>	
pH 10.0 Offset <i>-197.612</i>			
Acceptable? Y/N <i>Y</i>			

YSI 556 Calibration Documentation Sheet

Date 10-30-18

065241846

Technician: TB

Dissolved Oxygen

Type of Calibration Air

Barometric Pressure 760.7

D.O. Gain 1035.173

D.O. Local Gain 0.999080

Acceptable? Y/N Yes

Conductivity/Salinity

Type of Calibration 3pt

Conductivity Gain 1.413 ms/cm 0.989172 Standard Lot # V81 Exp. Date 03/2019

Conductivity Gain 12.88 ms/cm 0.991160 Standard Lot # 9882 Exp. Date 03/2021

Conductivity Gain 50.0 ms/cm 0.997566 Standard Lot # 18A100085 Exp. Date 7/13/2019

Acceptable? Y/N Yes

pH

Type of Calibration 3pt

pH 7.0 Gain -5.09109 Standard Lot # 6296-06 Exp. Date 10-23-19

pH 7.0 Offset -108.184

pH 4.01 Gain -5.13270 Standard Lot # 6292-20 Exp. Date 10-26-19

pH 4.01 Offset -109.073

pH 10.0 Gain -5.12035 Standard Lot # 62562031 Exp. Date 5-23-20

pH 10.0 Offset -110.233

Acceptable? Y/N Yes

Orion Dual Star pH/ISE meter/probe calibration

Date: 10-29-18	Technician: JMB	
Ammonia Probe OM102 9512		
Ammonia Standard Concentration: 100 mg/L	Lot # WVI	Expiration date: 05/2020
pH Adjusting ISA Solution 951211	Lot # UR1	Expiration date: N/A
Standard Dilution Water Source m.1/2 Q + Tonic Strength regulator		
Number of Standards in Curve 3	Concentration of Standards in Curve 1.0, 10.0, 100 mg/L	
Slope of Calibration Curve -59.2	Acceptable? Y/N	
Comments: HSC-NMP Electrode test start with mermaid and mysids		
pH Probe		
Number of Buffers in Curve		
pH Buffer 7.0 Lot #	Expiration Date	
pH Buffer 4.01 Lot #	Expiration Date	
pH Buffer 10.0 Lot #	Expiration Date	
Slope	Acceptable? Y/N	
Comments:		

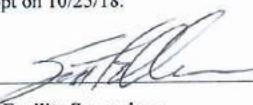
Orion Dual Star pH/ISE meter/probe calibration

Date: 11/21/18	Technician: Jay Lubay	
Ammonia Probe Orion 9512		
Ammonia Standard Concentration: 100 mg/L	Lot # W V 1	Expiration date: 05/2020
pH Adjusting ISA Solution 9512/1	Lot # CR 1	Expiration date: NA
Standard Dilution Water Source M:11eQ + Ionic Strength Adjuster		
Number of Standards in Curve 3	Concentration of Standards in Curve 1, 10, 100 mg/L	
Slope of Calibration Curve -55.3 -56.5	Acceptable? Y/N	
Comments: HSC-NMP Emtriate test termination with Menidiq & mysids.		
pH Probe		
Number of Buffers in Curve		
pH Buffer 7.0 Lot #	Expiration Date	
pH Buffer 4.01 Lot #	Expiration Date	
pH Buffer 10.0 Lot #	Expiration Date	
Slope	Acceptable? Y/N	
Comments:		

1300 Blue Spruce Drive, Suite C
Fort Collins, Colorado 80524

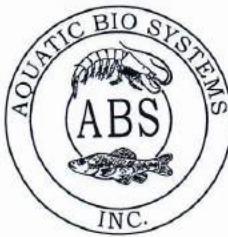
Toll Free: 800/331-5916
Tel: 970/484-5091 Fax: 970/484-2514

ORGANISM HISTORY


DATE: 10/25/2018
SPECIES: *Menidia beryllina*
AGE: 8 day
LIFE STAGE: Juvenile
HATCH DATE: 10/17/2018
BEGAN FEEDING: Immediately
FOOD: Rotifers, *Artemia* sp.

Water Chemistry Record:

	Current	Range
TEMPERATURE:	25°C	23-26 °C
SALINITY/CONDUCTIVITY:	25 ppt**	24-26 ppt
TOTAL HARDNESS (as CaCO ₃):	--	--
TOTAL ALKALINITY (as CaCO ₃):	160 mg/l	160-210 mg/l
pH:	8.19	7.87-8.25


Comments:

** Acclimated to 27 ppt on 10/25/18.

Facility Supervisor

Aquatic BioSystems, Inc. • Quality Research Organisms

1300 Blue Spruce Drive, Suite C
Fort Collins, Colorado 80524

Toll Free: 800/331-5916
Tel: 970/484-5091 Fax: 970/484-2514

ORGANISM HISTORY

DATE: 10/25/2018

SPECIES: *Americanopsis bahia* (formerly *Mysidopsis*)

AGE: <1 day

LIFE STAGE: Juvenile

HATCH DATE: 10/25/2018

BEGAN FEEDING: Immediately

FOOD: *Artemia* sp.

Water Chemistry Record:

	Mean	Range
TEMPERATURE:	26 °C	21-26 °C
SALINITY/CONDUCTIVITY:	25 ppt**	21-30 ppt
TOTAL HARDNESS (as CaCO ₃):	--	--
TOTAL ALKALINITY (as CaCO ₃):	140 mg/l	140-170 mg/l
pH:	8.15	7.77-8.20

Comments:

** Acclimated to 27 ppt on 10/25/18.

Facility Supervisor

Aquatic BioSystems, Inc • Quality Research Organisms

TEST ORGANISM RECEIVED ACCLIMATION SHEET

Project:	HSC- NMP		Test Initiation Date:	10-29-18		Time:	100	
Laboratory:	FEDC		Test Date(s):	10/29/18		Time:	100	
Test Species:	<i>Monodictyon alpinum</i>		Page 1 of 1					
Exposure duration:	Glob		Environmental chamber temperature:	20 °C				
Day	Date	Original Number	Estimated Survival	Water Change (Y/N)	Feeding (Y/N)	Temp. (°C)	Salinity/Cond. (ppt/ uS/cm)	pH
Day	Date	Original Number	Dead/removed	Water Change (Y/N)	Feeding (Y/N)	Temp. (°C)	Salinity/Cond. (ppt/ uS/cm)	pH
0*	10/26	2885	0	100%	Y	21.6	22.2	7.61
1	10/27	2885	0	—	N	20.2	29.7	7.31
2	10/28	2885	0	—	N	20.1	30.1	10.61
3	10/29							7.74
4								9.20
5								7.48
6								7.48
7								7.48
8								7.48
9								7.48
10								7.48
11								7.48
12								7.48
13								7.48
14								7.48
15								7.48
16								7.48
17								7.48
18								7.48
19								7.48
20								7.48
21								7.48
22								7.48
23								7.48
24								7.48

* Taken immediately upon receiving

Reviewed by Lauron May

on 29 March 19

TEST ORGANISM RECEIPT AND ACCLIMATION SHEET

Project: HSC-NMP Test Initiation Date: 02/25/08 Time: 1100Laboratory: EDC Test Date(s): 02/28 - 03/08 Time: 1100Test Species: America eurycea keyiExposure duration: 26 dEnvironmental chamber temperature: 20°C

Day	Date	Original Number	Number Dead/Removed	Estimated Survival (%)	Water Change (Y/N)	Feeding (Y/N)	Temp. (°C)	Salinity/Cond. (ppt / µS/cm)	pH	D.O. (mg/L)	Initials	Comments (mg/L)
0*	02/26	28885	Ø	100	✓	✓	25.2	32.05	7.34	10.9		
1	02/27	28885	Ø	-	N	Y	20.2	29.5	7.34	10.9		
2	02/28	28885	Ø	-	N	Y	20.1	29.9	7.39	9.34		test initiation
3	02/29											
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												

* Taken immediately upon receiving

Reviewed by Karen May on 29 March 19

Houston: NMP

Date:

Site	Start Salinity	Salt added (g)	Final Salinity
1	8.89	155.6	29.16
1sw	7.79	160.0	29.82
2	5.25	184.1	29.08
2sw	5.07	185. 205.3	29.74
3	4.73	205.79	29.73
3sw	4.82	117.5	28.91
4	4.13	210.0	29.2
4sw	3.62	215.0 122.0	30.0
5	3.44	216.5	29.8
5sw	2.97	125.9	29.83
6	2.03	228.1	32.74
6sw	1.80	131.0	29.65
7	2.31	225.8	29.7
7sw	1.71	131.7	29.2
8	2.68	207.0	29.38
8sw	2.54	127.0	29.18
9	2.75	206.3	29.37
9sw	2.61	127.6	29.34
10	2.47	224.5	29.81
10sw	2.24	121.3	29.22
11	1.18	235.1	29.51
11sw	1.17	134.4	29.69

Miscellaneous Documentation Sheet

Study: HSC North of Memphis Point		
Date	Technician	Comment

12-29-18 JMD Reference Toxicant solution 600 ml Menden buildings

Measured 6.0030g KCl and dissolved in 29.94gpt Crystal Sea
in a 3L volumetric flask.

Poured off 1500ml into graduated cylinder and distributed 400ml
to each of 3 600ml beakers. Discarded remaining solution in cylinder
Refilled volumetric flask with crystal sea and mixed.

Repeated above process until the 3 sets off the following
concentrations were prepared 2, 1, 0.5, 0.25 and 0.125 g/L KCl

Miscellaneous Documentation Sheet

Study: HSC toxicity of margins part.		
Date	Technician	Comment
10-29-13	DMP	Reference Toxicant solution 1g. <i>Anemoneopsis</i> <i>baltica</i> test (elutriation)
		Measured 3.0022 g KCl and dissolved in 29.97 mL Crystal Sea in a 3 L volumetric flask.
		Poured off 1500 mL into a graduated cylinder and distributed 400 mL ^{each} V into three 1 L beakers. discarded remaining in cylinder
		Refilled volumetric flask with crystal sea, mixed and repeated above process to obtain the following concentrations 3 per each 1.0, 0.5, 0.25, 0.125, 0.0625 g/L KCL.

REFERENCE TOXICITY TEST SHEET											
Project: <u>HC NMP</u>			Test Initiation Date: <u>12/01/19</u>			Time: <u>1400</u>					
Laboratory: <u>ERDC - EL</u>			Test Termination Date: <u>12/18</u>			Time: <u>1400</u>					
Test Species: <u>A. mania</u>			Page 1 of 1			Environmental chamber temperature: <u>20°C</u>					
Exposure duration: <u>96h</u>											
Cone.		No.	Number Alive			Temp. (°C)			pH (SU)		
Conc.	Repl.	Loaded	0 h	24 h	48 h	72 h	96 h	0 h	96 h	0 h	96 h
Control											
A	-	-	-	-	-	-	-	-	-	-	-
B	-	-	-	-	-	-	-	-	-	-	-
C	-	-	-	-	-	-	-	-	-	-	-
A	10	10	10	10	10	9	20.28	20.4	30.18	31.2	1.91
B	10	10	10	10	10	10	20.6	20.7	30.7	31.5	1.91
C	10	10	10	10	10	10	20.7	20.7	30.7	31.5	1.91
A	10	10	10	10	10	10	20.41	20.5	30.23	31.3	1.92
B	10	10	10	10	10	10	20.4	20.4	30.6	31.3	1.92
C	10	10	10	10	10	10	20.5	20.5	31.3	31.3	1.92
A	10	10	10	10	10	10	20.32	20.4	30.33	31.4	1.91
B	10	10	10	10	10	10	20.4	20.4	30.4	31.5	1.91
C	10	10	10	10	10	10	20.5	20.5	31.0	31.0	1.91
A	10	10	10	10	10	10	20.37	20.3	30.60	32.0	1.92
B	10	10	10	10	10	10	20.4	20.4	31.4	31.4	1.92
C	10	10	10	10	10	10	20.4	20.4	31.6	31.6	1.92
A	10	0	0	0	0	0	20.49	20.2	31.17	31.5	1.92
B	10	0	0	0	0	0	20.1	20.1	31.3	31.3	1.92
C	10	0	0	0	0	0	20.1	20.1	31.4	31.4	1.92
Initials: <u>VR</u> — <u>MM</u> <u>MM</u> <u>TR</u> <u>TR</u> <u>VR</u> <u>MM</u> <u>VR</u> <u>MM</u> <u>VR</u> <u>MM</u> <u>MM</u>											

Reviewed by Julian May on 29 March 19

ELUTRIATE TOXICITY TEST SHEET											
Project HSC NMP			Test Initiation Date: 07/21/18			Time: 3:40					
Site ID: 1			Test Termination Date: 11/21/18			Time: 12:46					
Test Species: <i>A. lethia</i>			Environmental chamber temperature: 20°C								
Exposure duration: 1 h											
Cont.	No.	No. Alive	Temp. (°C)	Salinity (ppt)	pH (S1)	D.O. (mg/L)	Ammonia (mg/L)				
Conc.	Rep.	Loaded	24 h	48 h	72 h	96 h	120 h	144 h	168 h	192 h	216 h
50%	A	10	12	12	12	12	12	12	12	12	12
	B	10	9	9	9	9	9	9	9	9	9
	C	10	10	10	10	10	10	10	10	10	10
	D	10	10	10	10	10	10	10	10	10	10
	E	10	10	10	10	10	10	10	10	10	10
10%	A	10	9	9	10	11	11	11	11	11	11
	B	10	10	10	10	10	10	10	10	10	10
	C	10	11	11	11	11	11	11	11	11	11
	D	10	9	9	9	9	9	9	9	9	9
	E	10	11	11	11	11	11	11	11	11	11
50%	A	10	10	10	9	10	15	21	3	20	8
	B	10	10	10	9	10	15	21	3	20	8
	C	10	10	10	8	10	15	21	3	20	8
	D	10	10	7	7	7	10	15	21	3	20
	E	10	10	10	10	10	10	10	10	10	10
100%	A	10	10	6	7	1	14	6	21	2	12
	B	10	10	9	8	7	10	5	20	5	15
	C	10	10	7	7	6	10	5	20	5	15
	D	10	9	9	8	7	10	5	20	5	15
	E	10	10	9	7	5	10	2	20	5	15
Initials (QAAE):	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR
Total NMP:	100	100	100	100	100	100	100	100	100	100	100
Date:	10/29/18	10/30/18	10/31/18	11/1/18	11/2/18	10/29/18	10/30/18	10/31/18	11/1/18	11/2/18	10/29/18
Time:	13:00	10:00	12:00	13:00	14:00	13:00	10:00	11:00	12:00	13:00	14:00

Montana May
29 March 19

ELUTRIATE TOXICITY TEST SHEET																		
Project: HSC NMP		Test Initiation Date: 07/08		Time: 1300														
Site ID: 2		Test Termination Date: 12/08		Time: 1301														
Test Species: <i>A. baylia</i>								Environmental chamber temperature 20°C										
Exposure duration	No.	No. alive	Temp. (°C)	Solubility (ppm)	pH (SI)	D.O. (mg/L)		Ammonia (mg/L)		96 h		48 h		24 h				
Cone.	Rep. / L	No.	24 h	48 h	96 h	0 h	24 h	48 h	96 h	0 h	24 h	48 h	96 h	0 h	24 h	48 h	96 h	
510	A 10	10	10	10	10	9.34	21.7	21.7	21.7	21.2	21.0	20.5	20.5	20.5	20.1	20.5	20.5	20.5
Water	B 10	10	10	10	10	10	10	10	10	21.1					30.3			30.3
	C 10	10	10	10	10	10	10	10	10	21.1					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	21.2					30.5			30.5
	E 10	10	10	10	10	10	10	10	10	21.0					30.3			30.3
	A 10	10	10	10	10	10	20.3	21.4	21.2	21.0	21.0	30.09	30.2	30.5	30.8	31.1	31.1	31.1
	B 10	10	10	10	10	10	10	10	10	21.0					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	21.0					31.1			31.1
	D 10	10	10	10	10	10	10	10	10	21.1					30.5			30.5
	E 10	10	10	10	10	10	10	10	10	21.2					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.9					31.6			31.6
	C 10	10	10	10	10	10	10	10	10	20.9					31.6			31.6
	D 10	10	10	10	10	10	10	10	10	20.9					31.6			31.6
	E 10	10	10	10	10	10	10	10	10	20.9					31.6			31.6
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.9					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.9					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	20.9					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	20.9					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	20.9					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	20.9					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	20.9					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	20.9					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	20.9					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	20.9					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	20.9					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10	10	10	10	10	10	20.8					31.2			31.2
	C 10	10	10	10	10	10	10	10	10	20.8					30.5			30.5
	D 10	10	10	10	10	10	10	10	10	20.9					30.4			30.4
	E 10	10	10	10	10	10	10	10	10	21.0					30.4			30.4
	A 10	10	10	10	10	10	20.5	21.4	21.2	21.0	20.9	29.7	29.6	29.5	29.8	30.0	30.0	30.0
	B 10	10	10	10														

ELUTRIATE TOXICITY TEST SHEET 1																								
Project: HSC NMP			Test initiation Date: 10/24/18			Time: 14:00																		
Site ID: 3			Test termination Date: 11/2/18			Time: 13:20																		
Test Species: <i>A. lethia</i>																								
Exposure duration: 20 h																								
Conc.	Rep.	No.	No. Alive	Temp. (°C)	Salinity (ppt)	pH (SU)	D.O. (mg/L)	Ammonia (mg/L)																
				24 h 48 h 72 h 96 h	0 h 24 h 48 h 72 h 96 h	0 h 24 h 48 h 72 h 96 h	0 h 24 h 48 h 72 h 96 h	0 h 24 h 48 h 72 h 96 h	0 h 24 h 48 h 72 h 96 h	0 h 24 h 48 h 72 h 96 h	0 h 24 h 48 h 72 h 96 h	0 h 24 h 48 h 72 h 96 h												
Site Water	A	10	10	10	10	10	10	10	10	10	10	10	10											
	B	10	10	10	10	10	10	10	10	10	10	10	10											
	C	10	10	10	10	10	10	10	10	10	10	10	10											
	D	10	9	9	9	9	9	9	9	9	9	9	9											
	E	10	10	10	10	10	10	10	10	10	10	10	10											
100%	A	10	10	8	19.6	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3											
	B	10	10	10	10	10	10	10	10	10	10	10	10											
	C	10	10	10	10	10	10	10	10	10	10	10	10											
	D	10	10	10	10	10	10	10	10	10	10	10	10											
	E	10	9	9	9	9	9	9	9	9	9	9	9											
Experiments chamber temperature: 20.6																								
Initial O ₂ : 1000 ppm																								
Initial pH: 7.97																								
Initial Salinity: 30.0																								
Initial Ammonia: 0.00 mg/L																								

Fluorimetry
29 March 19

ELUTRIATE TOXICITY TEST SHEET I																					
Project: HG/L NMP		Test Initiation Date: 02/01/18		Time: 1330-1350																	
Site ID: 4		Test Termination Date: 11/21/18		Time: 1239																	
Test Species: A. bahia		Page 1 of 1																			
Exposure duration: 96h		Environmental chamber temperature: 20°C																			
Conc.		No.	No. Alive	Temp. (°C)		Salinity (ppt)		pH (SL)		D.O. (mg/L)		Ammonia (mg/L)									
Conc.	Rep.	No.	No. Alive	24 h	48 h	72 h	96 h	0 h	24 h	48 h	72 h	96 h	0 h	24 h	48 h	72 h	96 h	0 h	96 h		
Site C		A	10	10	10	9	19.51	20.24	19.8	20.1	20.2	20.2	20.2	20.1	20.1	20.1	20.1	20.1	20.1	20.1	
Water		B	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
10%		C	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
50%		D	10	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
100%		E	10	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
500%		A	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
1000%		B	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
5000%		C	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
10000%		D	10	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
50000%		E	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Initials: H/L		M3	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Date: 10/21		10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21	10/21
Time: 1350		1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350
Initials (Q/N): VR		VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR

Lauren May
29 March 19

ELUTRIATE TOXICITY TEST SHEET																											
Project: HSC NMP		Test Initiation Date: 10/29/18		Time: 1620																							
Site ID: 6		Test Termination Date: 11/2/18		Time: 1252																							
Test Species: <i>Menidia A. bahia</i>		Page: 1 of 1																									
Exposure duration: 96h		Environmental chamber temperature: 20°C																									
Salinity (ppt)		pH (SU)		D.O. (mg/L)		Ammonium (mg/L)																					
Conc.	Rep. 1 Located	24 h	48 h	72 h	96 h	0 h	24 h	48 h	72 h	96 h	0 h	24 h	48 h	72 h	96 h												
Site 6		10	10	10	10	10	10.23	10.5	10.4	20.0	19.47	20.03	20.4	20.9	20.2	20.3	17.97	16.73	7.90	7.33	7.96	0.0	0 h	96 h			
Water		10	10	10	10	10	8				10.4						20.6					7.91					
10%		10	10	10	10	10					10.4							20.6					7.93				
50%		10	10	10	10	10					10.3						20.7					7.94					
100%		10	10	10	10	10					10.2						20.8					7.95					
Initials: A/H/1/		10	10	10	10	10					10.1						20.9					7.96					
Date: 10/29/18		10/29/18	10/31/18	11/1/18	10/31/18	10/31/18					10/29/18	10/30/18	10/31/18	10/31/18	10/31/18		10/31/18					7.97					
Time: 1620		1620	1736/14/11	1752/14/11	1748/14/11	1701/1000	17370/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000	1548/701/1000
Initials: VR		VR	56	56	56	56																					

Reviewed by Julian May on 29 March 19

ELUTRIATE TOXICITY TEST SHEET											
Project HSC NMP				Test Initiation Date 10/29/8				Time 1600			
Site ID 6		Test Termination Date 11/2/18		Time 1300		Page 1 of 1					
Exposure duration											Environmental chamber temperature: 20°C
Case	Replicate	No.	No. Alive	Temp. (°C)	Salinity (ppt)	pH (SST)	B.O. (mg/L)	Ammonium (mg/L)	0 h	72 h	96 h
S1+C Water	A	10	10	9	19.39	19.6	20.3	20.9	24.1	48 h	72 h
	B	10	9	9	19.39	20.0	20.4	20.5	24 h	48 h	72 h
	C	10	9	9	19.39	20.0	20.4	20.5	0 h	24 h	48 h
	D	10	10	9	19.39	20.0	20.4	20.5	24 h	48 h	72 h
	E	10	9	9	19.39	20.0	20.4	20.5	0 h	24 h	48 h
	F	10	10	10	20.30	20.6	20.2	20.6	14.7	24 h	48 h
101.	A	10	10	9	19.39	19.6	20.3	20.6	14.7	24 h	48 h
	B	10	10	10	19.6	20.0	20.4	20.5	14.7	24 h	48 h
	C	10	10	10	19.6	20.0	20.4	20.5	14.7	24 h	48 h
	D	10	9	8	19.6	20.0	20.4	20.5	14.7	24 h	48 h
	E	10	10	10	19.6	20.0	20.4	20.5	14.7	24 h	48 h
	F	10	10	10	19.6	20.0	20.4	20.5	14.7	24 h	48 h
501.	A	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
	B	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
	C	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
	D	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
	E	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
	F	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
1001.	A	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
	B	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
	C	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
	D	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
	E	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
	F	10	10	10	19.39	19.7	20.3	20.5	14.7	24 h	48 h
Initials: <u>AB</u> <u>AB</u> <u>AB</u> <u>AB</u> <u>AB</u> <u>AB</u>											
Date: 10/29/18 10/31/18 11/1/18 11/2/18 11/3/18 11/4/18											
Time: 1600 1057 1554 1730 1800 1150 2140 1000 1339 1102 1550 2140 1000											
Initials (Q3): <u>AB</u> <u>AB</u> <u>AB</u> <u>AB</u> <u>AB</u> <u>AB</u>											

Reviewed by Lawren May on 29 March 19

FLUORATE TOXICITY TEST SHEET											
Project: HSL NMP			Test Initiation Date: 10/29/18			Time: 1525					
Site ID: 7			Test Termination Date: 11/12/18			Time: 1235					
Test species: <i>Algalia</i>			Page of			Environmental chamber temperature: 20°C					
Exposure duration: 96h											
Cont.	No.	Rep. Labeled	No. Alive	No. Dead	Temp. (°C)	Salinity (ppt)	pH (SU)	D.O. (mg/L)	Ammonia (mg/L)		
	24 h	48 h	72 h	96 h	0 h	24 h	48 h	72 h	96 h	0 h	24 h
Site	A	10	10	10	10	10	10	10	10	0 h	72 h
Water	B	10	10	10	9	10	10	10	10	0 h	96 h
	C	10	10	10	8	10	10	10	10	0 h	24 h
	D	10	10	10	9	10	10	10	10	0 h	48 h
	E	10	9	7	7	9	9	9	9	0 h	72 h
	A	10	10	10	10	10	10	10	10	0 h	96 h
10%	B	10	10	10	10	10	10	10	10	0 h	24 h
	C	10	10	10	10	10	10	10	10	0 h	48 h
	D	10	10	10	10	10	10	10	10	0 h	72 h
	E	10	10	10	10	10	10	10	10	0 h	96 h
100%	A	10	10	9	9	10	10	10	10	0 h	24 h
	B	10	10	9	9	10	10	10	10	0 h	48 h
	C	10	10	10	10	10	10	10	10	0 h	72 h
	D	10	10	10	10	10	10	10	10	0 h	96 h
	E	10	10	10	10	10	10	10	10	0 h	24 h
50%	A	10	10	11	11	11	11	11	11	0 h	48 h
	B	10	10	10	10	10	10	10	10	0 h	72 h
	C	10	10	10	10	10	10	10	10	0 h	96 h
	D	10	10	10	10	10	10	10	10	0 h	24 h
	E	10	10	10	10	10	10	10	10	0 h	48 h
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	24.78
	E	10	1	1	1	10.7	20.3	19.7	19.8	14.0	24.78
Initials: <i>JK</i>	A	10	6	4	4	10.7	20.3	19.7	19.8	14.0	24.78
	B	10	4	3	3	10.7	20.3	19.7	19.8	14.0	24.78
	C	10	4	2	2	10.7	20.3	19.7	19.8	14.0	24.78
	D	10	3	1	0	10.7	20.3	19.7	19.8	14.0	

ELUTRIATE TOXICITY TEST SHEET																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Project: NSC NMP				Test Initiation Date: 10/29/08				Time: 3:40																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
Site ID: 8				Test Termination Date: 11/2/08				Time: 24:5																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
Test Species: A. bahia				Exposure duration: 20°C																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
Environmental chamber temperature: 20°C																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Cont.	No.	No. Alive	Temp. (°C)	Salinity (ppt)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
	Cont.	No.	No. Alive	24 h	48 h	72 h	96 h	120 h	144 h	168 h	192 h	216 h	240 h	264 h	288 h	312 h	336 h	360 h	384 h	408 h	432 h	456 h	480 h	504 h	528 h	552 h	576 h	600 h	624 h	648 h	672 h	696 h	720 h	744 h	768 h	792 h	816 h	840 h	864 h	888 h	912 h	936 h	960 h	984 h	1008 h	1032 h	1056 h	1080 h	1104 h	1128 h	1152 h	1176 h	1200 h	1224 h	1248 h	1272 h	1300 h	1324 h	1352 h	1380 h	1408 h	1436 h	1464 h	1492 h	1520 h	1548 h	1576 h	1604 h	1632 h	1660 h	1688 h	1716 h	1744 h	1772 h	1800 h	1828 h	1856 h	1884 h	1912 h	1940 h	1968 h	1996 h	2024 h	2052 h	2080 h	2108 h	2136 h	2164 h	2192 h	2220 h	2248 h	2276 h	2304 h	2332 h	2360 h	2388 h	2416 h	2444 h	2472 h	2500 h	2528 h	2556 h	2584 h	2612 h	2640 h	2668 h	2696 h	2724 h	2752 h	2780 h	2808 h	2836 h	2864 h	2892 h	2920 h	2948 h	2976 h	3004 h	3032 h	3060 h	3088 h	3116 h	3144 h	3172 h	3200 h	3228 h	3256 h	3284 h	3312 h	3340 h	3368 h	3396 h	3424 h	3452 h	3480 h	3508 h	3536 h	3564 h	3592 h	3620 h	3648 h	3676 h	3704 h	3732 h	3760 h	3788 h	3816 h	3844 h	3872 h	3900 h	3928 h	3956 h	3984 h	4012 h	4040 h	4068 h	4096 h	4124 h	4152 h	4180 h	4208 h	4236 h	4264 h	4292 h	4320 h	4348 h	4376 h	4404 h	4432 h	4460 h	4488 h	4516 h	4544 h	4572 h	4600 h	4628 h	4656 h	4684 h	4712 h	4740 h	4768 h	4796 h	4824 h	4852 h	4880 h	4908 h	4936 h	4964 h	4992 h	5020 h	5048 h	5076 h	5104 h	5132 h	5160 h	5188 h	5216 h	5244 h	5272 h	5300 h	5328 h	5356 h	5384 h	5412 h	5440 h	5468 h	5496 h	5524 h	5552 h	5580 h	5608 h	5636 h	5664 h	5692 h	5720 h	5748 h	5776 h	5804 h	5832 h	5860 h	5888 h	5916 h	5944 h	5972 h	6000 h	6028 h	6056 h	6084 h	6112 h	6140 h	6168 h	6196 h	6224 h	6252 h	6280 h	6308 h	6336 h	6364 h	6392 h	6420 h	6448 h	6476 h	6504 h	6532 h	6560 h	6588 h	6616 h	6644 h	6672 h	6700 h	6728 h	6756 h	6784 h	6812 h	6840 h	6868 h	6896 h	6924 h	6952 h	6980 h	7008 h	7036 h	7064 h	7092 h	7120 h	7148 h	7176 h	7204 h	7232 h	7260 h	7288 h	7316 h	7344 h	7372 h	7400 h	7428 h	7456 h	7484 h	7512 h	7540 h	7568 h	7596 h	7624 h	7652 h	7680 h	7708 h	7736 h	7764 h	7792 h	7820 h	7848 h	7876 h	7904 h	7932 h	7960 h	7988 h	8016 h	8044 h	8072 h	8100 h	8128 h	8156 h	8184 h	8212 h	8240 h	8268 h	8296 h	8324 h	8352 h	8380 h	8408 h	8436 h	8464 h	8492 h	8520 h	8548 h	8576 h	8604 h	8632 h	8660 h	8688 h	8716 h	8744 h	8772 h	8800 h	8828 h	8856 h	8884 h	8912 h	8940 h	8968 h	8996 h	9024 h	9052 h	9080 h	9108 h	9136 h	9164 h	9192 h	9220 h	9248 h	9276 h	9304 h	9332 h	9360 h	9388 h	9416 h	9444 h	9472 h	9500 h	9528 h	9556 h	9584 h	9612 h	9640 h	9668 h	9696 h	9724 h	9752 h	9780 h	9808 h	9836 h	9864 h	9892 h	9920 h	9948 h	9976 h	10004 h	10032 h	10060 h	10088 h	10116 h	10144 h	10172 h	10200 h	10228 h	10256 h	10284 h	10312 h	10340 h	10368 h	10396 h	10424 h	10452 h	10480 h	10508 h	10536 h	10564 h	10592 h	10620 h	10648 h	10676 h	10704 h	10732 h	10760 h	10788 h	10816 h	10844 h	10872 h	10900 h	10928 h	10956 h	10984 h	11012 h	11040 h	11068 h	11096 h	11124 h	11152 h	11180 h	11208 h	11236 h	11264 h	11292 h	11320 h	11348 h	11376 h	11404 h	11432 h	11460 h	11488 h	11516 h	11544 h	11572 h	11600 h	11628 h	11656 h	11684 h	11712 h	11740 h	11768 h	11796 h	11824 h	11852 h	11880 h	11908 h	11936 h	11964 h	11992 h	12020 h	12048 h	12076 h	12104 h	12132 h	12160 h	12188 h	12216 h	12244 h	12272 h	12300 h	12328 h	12356 h	12384 h	12412 h	12440 h	12468 h	12496 h	12524 h	12552 h	12580 h	12608 h	12636 h	12664 h	12692 h	12720 h	12748 h	12776 h	12804 h	12832 h	12860 h	12888 h	12916 h	12944 h	12972 h	13000 h	13028 h	13056 h	13084 h	13112 h	13140 h	13168 h	13196 h	13224 h	13252 h	13280 h	13308 h	13336 h	13364 h	13392 h	13420 h	13448 h	13476 h	13504 h	13532 h	13560 h	13588 h	13616 h	13644 h	13672 h	13700 h	13728 h	13756 h	13784 h	13812 h	13840 h	13868 h	13896 h	13924 h	13952 h	13980 h	14008 h	14036 h	14064 h	14092 h	14120 h	14148 h	14176 h	14204 h	14232 h	14260 h	14288 h	14316 h	14344 h	14372 h	14400 h	14428 h	14456 h	14484 h	14512 h	14540 h	14568 h	14596 h	14624 h	14652 h	14680 h	14708 h	14736 h	14764 h	14792 h	14820 h	14848 h	14876 h	14904 h	14932 h	14960 h	14988 h	15016 h	15044 h	15072 h	15100 h	15128 h	15156 h	15184 h	15212 h	15240 h	15268 h	15296 h	15324 h	15352 h	15380 h	15408 h	15436 h	15464 h	15492 h	15520 h	15548 h	15576 h	15604 h	15632 h	15660 h	15688 h	15716 h	15744 h	15772 h	15800 h	15828 h	15856 h	15884 h	15912 h	15940 h	15968 h	15996 h	16024 h	16052 h	16080 h	16108 h	16136 h	16164 h	16192 h	16220 h	16248 h	16276 h	16304 h	16332 h	16360 h	16388 h	16416 h	16444 h	16472 h	16500 h	16528 h	16556 h	16584 h	16612 h	16640 h	16668 h	16696 h	16724 h	16752 h	16780 h	16808 h	16836 h	16864 h	16892 h	16920 h	16948 h	16976 h	17004 h	17032 h	17060 h	17088 h	17116 h	17144 h	17172 h	17200 h	17228 h	17256 h	17284 h	17312 h	17340 h	17368 h	17396 h	17424 h	17452 h	17480 h	17508 h	17536 h	17564 h	17592 h	17620 h	17648 h	17676 h	17704 h	17732 h	17760 h	17788 h	17816 h	17844 h	17872 h	17900 h	17928 h	17956 h	17984 h	18012 h	18040 h	18068 h	18096 h	18124 h	18152 h	18180 h	18208 h	18236 h	18264 h	18292 h	18320 h	18348 h	18376 h	18404 h	18432 h	18460 h	18488 h	18516 h	18544 h	18572 h	18600 h	18628 h	18656 h	18684 h	18712 h	18740 h	18768 h	18796 h	18824 h	18852 h	18880 h	18908 h	18936 h	18964 h	18992 h	19020 h	19048 h	19076 h	19104 h	19132 h	19160 h	19188 h	19216 h	19244 h	19272 h	19300 h	19328 h	19356 h	19384 h	19412 h	19440 h	19468 h	19496 h	19524 h	19552 h	19580 h	19608 h	19636 h	19664 h	19692 h	19720 h	19748 h	19776 h	19804 h	19832 h	19860 h	19888 h	19916 h	19944 h	19972 h	20000 h	20028 h	20056 h	20084 h	20112 h	20140 h	20168 h	20196 h	20224 h	20252 h	20280 h	20308 h	20336 h	20364 h	20392 h	20420 h	20448 h	20476 h	20504 h	20532 h	20560 h	20588 h	20616 h	20644 h	20672 h	20700 h	20728 h	20756 h	20784 h	20812 h	20840 h	20868 h	20896 h	20924 h	20952 h	20980 h	21008 h	21036 h	21064 h	21092 h	21120 h	21148 h	21176 h	21204 h	21232 h	21260 h	21288 h	21316 h	21344 h	21372 h	21400 h	21428 h	21456 h	21484 h	21512 h	21540 h	21568 h	21596 h	21624 h	21652 h	21680 h	21708 h	21736 h	21764 h	21792 h	21820 h	21848 h	21876 h	21904 h	21932 h	21960 h	21988 h	22016 h	22044 h	22072 h	22100 h	22128 h	22156 h	22184 h	22212 h	22240 h	22268 h	22296 h	22324 h	22352 h	22380 h	22408 h	22436 h	22464 h	22492 h	22520 h	22548 h	22576 h	22604 h	22632 h	22660 h	22688 h	22716 h	22744 h	22772 h	22800 h	22828 h	22856 h	22884 h	22912 h	22940 h	22968 h	22996 h	23024 h	23052 h	23080 h	23108 h	23136 h	23164 h	23192 h	23220 h	23248 h	23276 h	23304 h	23332 h	23360 h	23388 h	23416 h	23444 h	23472 h	23500 h	23528 h	23556 h	23584 h	23612 h	23640 h	23668 h	23696 h	23724 h	23752 h	23780 h	23808 h	23836 h	23864 h	23892 h	23920 h	23948 h	23976 h	24004 h	24032 h	24060 h	24088 h	24116 h	24144 h	24172 h	24200 h	24228 h	24256 h	24284 h	24312 h	24340 h	24368 h	24396 h	24424 h	24452 h	24480 h	24508 h	24536 h	24564 h	24592 h	24620 h	24648 h	24676 h	24704 h	24732 h	24760 h	24788 h	24816 h	24844 h	24872 h	24900 h	24928 h	24956 h	24984 h	25012 h	25040 h	25068 h	25096 h	25124 h	25152 h	25180 h	25208 h	25236 h	25264 h	25292 h	25320 h	25348 h	25376 h	25404 h	25432 h	25460 h	25488 h	25516 h	25544 h	25572 h	25600 h	25628 h	25656 h	25684 h	25712 h	25740 h	25768 h	25796 h	25824 h	25852 h	25880 h	25908 h	25936 h	25964 h	25992 h	26020 h	26048 h	26076 h	26104 h	26132 h	26160 h	26188 h	26216 h	26244 h	26272 h	26300 h	26328 h	26356 h	26384 h	26412 h	26440 h	26468 h	26496 h	26524 h	26552 h	26580 h	26608 h

ELUTRIATE TOXICITY TEST SHEET												
Project HSE/ NMP			Test Initiation Date 10/29/18			Time 14:10						
Site ID 9			Test Initiation Date 11/21/18			Time 13:00						
Test Species <i>A. baumannii</i>			Page 1 of 1			Environmental chamber temperature 20°C						
Exposure duration 96h												
Cont.	No.	Rep. 1 loaded	No. Alive	Temp. (°C)	Salinity (ppt)	pH (SCE)	B.O. (time L)			Ammonium (mg/L)		
Site	No.	24 h	48 h	72 h	96 h	0 h	24 h	48 h	72 h	0 h	24 h	
Water	A	10	10	10	10	10	19.54	20.1	20.6	20.2	29.03	29.7
	B	10	10	10	10	10	20.2	20.7	21.2	21.7	30.5	30.5
	C	10	10	10	10	10	20.3	20.8	21.3	21.8	30.5	30.5
	D	10	10	10	10	10	20.3	20.8	21.3	21.8	30.5	30.5
	E	10	10	10	8.9	8.2	20.0	20.5	21.0	21.5	30.5	30.5
	A	10	10	10	10	10	20.7	20.2	20.6	20.4	30.1	30.1
101.	B	10	9	9	9	9	20.1	20.1	20.1	20.1	30.1	30.1
	C	10	9	9	9	9	20.1	20.1	20.1	20.1	30.1	30.1
	D	10	9	8	8	8	20.0	20.0	20.0	20.0	30.0	30.0
	E	10	10	10	10	10	19.9	19.9	19.9	19.9	30.8	30.8
	A	10	9	9	9	9	20.29	20.5	20.5	20.3	30.1	30.1
501.	B	10	9	9	9	9	20.1	20.1	20.1	20.1	30.7	30.7
	C	10	9	9	9	9	19.9	19.9	19.9	19.9	30.7	30.7
	D	10	8	8	8	8	19.8	19.8	19.8	19.8	30.6	30.6
	E	10	10	10	10	10	19.8	19.8	19.8	19.8	30.6	30.6
	A	10	10	10	10	10	19.55	20.1	20.2	19.9	30.4	30.4
1001.	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	B	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	C	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	D	10	9	9	9	9	19.4	19.4	19.4	19.4	30.0	30.0
	E	10	10	10	10	9	19.4	19.4	19.4	19.4	30.0	30.0
	A	10	10	10	10							

Reviewed by Julian May on 26 March 19

ELUTRIATE TOXICITY TEST-SHEET											
Project: <u>HTSC NMP</u>			Test Initiation Date: <u>029/9</u>			Time: <u>5/0</u>					
Site ID: <u>11</u>			Test Termination Date: <u>12/8</u>			Time: <u>3/2</u>					
Test Species: <u>A. bahia</u>			Page <u>1</u> of <u>1</u>			Environmental chamber temperature: <u>20°C</u>					
Exposure duration: <u>96h</u>			Salinity (ppt)			pH (SI)			D.O. (mg/l)		
Cone.	No.	RepL	0	1	2	0	1	2	0	1	2
	No.	RepL	24 h	48 h	72 h	96 h	0 h	24 h	48 h	72 h	96 h
Site Water	A	10	10	8	8	9	10	10	10	10	10
	B	10	10	9	9	7	10	10	10	10	10
	C	10	10	10	8	7	10	10	10	10	10
	D	10	10	10	10	10	10	10	10	10	10
	E	10	10	10	10	9	10	10	10	10	10
	F	10	10	10	10	10	10	10	10	10	10
10%	A	10	10	10	10	10	10	10	10	10	10
	B	10	10	10	10	10	10	10	10	10	10
	C	10	10	10	10	10	10	10	10	10	10
	D	10	10	10	10	10	10	10	10	10	10
	E	10	10	10	10	10	10	10	10	10	10
	F	10	10	10	10	10	10	10	10	10	10
50%	A	10	10	10	10	10	10	10	10	10	10
	B	10	10	10	10	10	10	10	10	10	10
	C	10	10	10	10	10	10	10	10	10	10
	D	10	10	10	10	10	10	10	10	10	10
	E	10	10	10	10	10	10	10	10	10	10
	F	10	10	10	10	10	10	10	10	10	10
100%	A	10	10	8	8	10	12	19.8	20.3	20.4	20.3
	B	10	10	10	10	10	10	10	10	10	10
	C	10	10	8	8	8	8	8	8	8	8
	D	10	10	10	9	8	8	8	8	8	8
	E	10	10	10	10	8	8	8	8	8	8
	F	10	10	10	10	10	10	10	10	10	10
Initials: <u>W. P. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u>			Initials: <u>W. P. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u>			Initials: <u>W. P. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u>			Initials: <u>W. P. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u> <u>M. B.</u>		
Date: <u>02/9</u> <u>03/01/03</u> <u>01/1</u>			Date: <u>02/9</u> <u>03/01/03</u> <u>01/1</u>			Date: <u>02/9</u> <u>03/01/03</u> <u>01/1</u>			Date: <u>02/9</u> <u>03/01/03</u> <u>01/1</u>		
Time: <u>150</u> <u>153</u> <u>145</u> <u>1416</u>			Time: <u>1252</u> <u>1252</u> <u>1252</u> <u>1252</u>			Time: <u>1252</u> <u>1252</u> <u>1252</u> <u>1252</u>			Time: <u>1252</u> <u>1252</u> <u>1252</u> <u>1252</u>		
Initials (Q.S.): <u>W</u>			Initials (Q.S.): <u>W</u>			Initials (Q.S.): <u>W</u>			Initials (Q.S.): <u>W</u>		

Reviewed by J. M. May on 29 March 19

ELUTRIATE TOXICITY TEST SHEET														
Project: HSC NMP			Test Initiation Date: 029/8			Time: 14:00			Test Termination Date: 1/2/18			Time: 3:47		
Site ID: Control			Test Species: A. bahia			Environmental chamber temperature 20.0°C			Salinity (ppt)			pH (S.U.)		
Exposure duration: 96 h			Temp. (°C)			0 h			0 h			0 h		
Cone.	Rep.	No.	No.	No.	No.	24 h	48 h	72 h	96 h	0 h	24 h	48 h	72 h	96 h
(0.0110)														
A	10	10	10	10	10	20.7	20.7	20.7	20.7	30.0	30.2	30.3	30.4	31
B	10	9	9	8	8					20.6		30.5		
C	10	10	10	10	10					20.6		30.6		
D	10	10	10	10	10					20.6		30.5		
E	10	10	10	10	10					20.6		30.5		
A														
B														
C														
D														
E														
A														
B														
C														
D														
E														
A														
B														
C														
D														
E														
A														
B														
C														
D														
E														
Initials: <u>AB</u> <u>AB</u> <u>AB</u> <u>AB</u> <u>AB</u>	1/1	1/1	1/1	1/1	1/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1	5/1
Date: 0/2/18	1/1/2018	1/1/2018	1/1/2018	1/1/2018	1/1/2018	1/1/2018	1/1/2018	1/1/2018	1/1/2018	1/1/2018	1/1/2018	1/1/2018	1/1/2018	1/1/2018
Time: 14:00	13:59	13:59	13:59	13:59	13:59	13:59	13:59	13:59	13:59	13:59	13:59	13:59	13:59	13:59
Initials (QNa): <u>AB</u> <u>AB</u> <u>AB</u> <u>AB</u> <u>AB</u>	7/1	7/1	7/1	7/1	7/1	7/1	7/1	7/1	7/1	7/1	7/1	7/1	7/1	7/1

Author: Mary
29/3/18

REFERENCE TOXICITY TEST SHEET											
Project: HSC-NMP			Test Initiation Date: 10/29/18			Time: 1400					
Laboratory: ERL-EL			Test Termination Date: 11/21/18			Time: 1400					
Test Species: Menidia			Page 1 of 1								
Exposure duration: 96 h			Environmental chamber temperature: 20°C								
Cone.	Repl.	No.	Number Alive			Temp. (°C)	Salinity (ppt)	pH (SU)	D.O. (mg/L)	Comments	
			0 h	24 h	48 h	72 h	96 h	0 h	96 h	0 h	96 h
Control											
	A	—	—	—	—	—	—	—	—	—	—
	B	—	—	—	—	—	—	—	—	—	—
	C	—	—	—	—	—	—	—	—	—	—
6%											
	A	10	10	10	10	10	10	10	10	10	10
	B	10	10	10	10	10	10	10	10	10	10
	C	10	10	10	10	10	10	10	10	10	10
12.5%											
	A	10	10	10	10	10	10	10	10	10	10
	B	10	10	10	10	10	10	10	10	10	10
	C	10	10	10	10	10	10	10	10	10	10
25%											
	A	10	10	10	10	10	10	10	10	10	10
	B	10	10	10	10	10	10	10	10	10	10
	C	10	10	10	10	10	10	10	10	10	10
50%											
	A	10	10	10	10	10	10	10	10	10	10
	B	10	10	10	10	10	10	10	10	10	10
	C	10	10	10	10	10	10	10	10	10	10
100%											
	A	10	5	4	3	3	3	3	3	3	3
	B	10	4	1	1	1	1	1	1	1	1
	C	10	5	3	2	1	1	1	1	1	1
Initials: KR											
		—	nm	nm	nm	nm	nm	nm	nm	nm	nm
			nm	nm	nm	nm	nm	nm	nm	nm	nm

Reviewed by Lawren May on 29 March 19

ELUTRIATE TOXICITY TEST SHEET													
Project HSY NNP		Test Initiation Date 01/29/18		Time 1445									
Site ID 1		Test termination Date 01/29/18		Time 1332		Page 1 of 1							
Test Species <i>Muticilia</i>	Exposure duration 90h	Environmental chamber temperature 20°C											
Conc.	Replicate	No. tested	24 h	48 h	72 h	96 h	120 h	144 h	168 h	192 h	216 h	240 h	24 h
50%	A	10	10	10	10	10	10	10	10	10	10	10	0 h
Water	B	10	10	10	10	10	10	10	10	10	10	10	96 h
Water	C	10	10	10	10	10	10	10	10	10	10	10	72 h
Water	D	10	10	10	10	10	10	10	10	10	10	10	48 h
Water	E	10	10	10	10	10	10	10	10	10	10	10	24 h
10%	A	10	10	10	10	10	10	10	10	10	10	10	0 h
10%	B	11	11	11	11	11	11	11	11	11	11	11	96 h
10%	C	10	10	10	10	10	10	10	10	10	10	10	72 h
10%	D	10	10	10	10	10	10	10	10	10	10	10	48 h
10%	E	10	10	10	10	10	10	10	10	10	10	10	24 h
50%	A	10	10	10	10	10	10	10	10	10	10	10	0 h
50%	B	10	10	10	10	10	10	10	10	10	10	10	96 h
50%	C	10	10	10	10	10	10	10	10	10	10	10	72 h
50%	D	10	10	10	10	10	10	10	10	10	10	10	48 h
50%	E	10	10	10	10	10	10	10	10	10	10	10	24 h
100%	A	10	6	4	4	4	4	4	4	4	4	4	0 h
100%	B	10	6	4	4	4	4	4	4	4	4	4	96 h
100%	C	10	6	4	4	4	4	4	4	4	4	4	72 h
100%	D	10	8	4	3	3	3	3	3	3	3	3	48 h
100%	E	10	8	8	7	7	7	7	7	7	7	7	24 h
Initials: HSY	nm	nm	TB	UR	UR	SL	nm	SL	nm	SL	nm	SL	nm
Date: 01/29/18	10/31	11/1	1/2	10/29	10/30	10/31	1/2	10/29	10/31	11/1	1/2	10/29	10/31
Time: 1445	12:45	13:08	13:24	13:29	13:30	13:33	13:34	13:35	13:36	13:37	13:38	13:39	13:40
Initials (OA): HSY	10/31	11/1	1/2	10/29	10/30	10/31	1/2	10/29	10/31	11/1	1/2	10/29	10/31

HSY
29 March 18

ELUTRIATE TOXICITY TEST SHEET											
Test initiation Date: 10/29/18			Time: 14:50								
Test termination Date: 11/2/18			Time: 13:46								
Page 1 of 1											
Environmental chamber temperature: 20°C											
Exposure duration: 96 h											
Species: Menidia											
Conc.: 0											
Temp. (°C)											
No. Alive											
No.											
Repn. Loaded											
0											
Site: Water											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											

Lauren May
29 March 19

January May
2019

WILTRIDGE TOWNSHIP TEST SHEET

ILLUSTRATE TOXICITY TEST SHEET											
Project No. HSC-WMAP			Test Initiation Date 10/29/87			Time 1452			Test Termination Date 11/1/87		
Size ID 4			Page 1 of 1			Time 1337					
Environmental chamber temperature 20°C						Ammonia (mg/l)					
Conc.	Replicates	No.	No. Alive	Temp. (°C)	Salinity (ppm)	pH (SST)	DO (mg/l)	96 h	72 h	48 h	24 h
0.01	A	10	10	19.5	20.1	19.9	7.90	7.90	7.89	7.75	7.69
0.01	B	10	10	19.5	20.0	20.0	7.91	7.91	7.89	7.75	7.69
0.01	C	10	10	19.5	20.0	20.0	7.91	7.91	7.89	7.75	7.69
0.01	D	10	10	19.5	20.0	20.0	7.91	7.91	7.89	7.75	7.69
0.01	E	10	9	19.5	20.1	20.1	7.91	7.91	7.89	7.75	7.69
0.1	A	10	10	20.5	20.4	19.8	20.1	20.1	20.0	20.0	20.0
0.1	B	10	10	20.5	20.4	19.8	20.1	20.1	20.0	20.0	20.0
0.1	C	10	10	20.5	20.4	19.8	20.1	20.1	20.0	20.0	20.0
0.1	D	10	10	20.5	20.4	19.8	20.1	20.1	20.0	20.0	20.0
0.1	E	10	10	20.5	20.4	19.8	20.1	20.1	20.0	20.0	20.0
0.5	A	10	10	20.5	20.5	19.9	20.0	20.0	20.0	20.0	20.0
0.5	B	10	9	20.5	20.5	19.9	20.0	20.0	20.0	20.0	20.0
0.5	C	10	10	20.5	20.5	19.9	20.0	20.0	20.0	20.0	20.0
0.5	D	10	10	20.5	20.5	19.9	20.0	20.0	20.0	20.0	20.0
0.5	E	10	10	20.5	20.5	19.9	20.0	20.0	20.0	20.0	20.0
1.0	A	10	4	21.5	20.5	20.0	20.2	20.2	20.1	20.1	20.1
1.0	B	10	7	21.5	20.5	20.0	20.2	20.2	20.1	20.1	20.1
1.0	C	10	8	21.5	20.5	20.0	20.2	20.2	20.1	20.1	20.1
1.0	D	10	9	21.5	20.5	20.0	20.2	20.2	20.1	20.1	20.1
1.0	E	10	9	21.5	20.5	20.0	20.2	20.2	20.1	20.1	20.1
1.00	A	10	10	21.5	20.5	20.0	20.2	20.2	20.1	20.1	20.1
1.00	B	10	9	21.5	20.5	20.0	20.2	20.2	20.1	20.1	20.1
1.00	C	10	8	21.5	20.5	20.0	20.2	20.2	20.1	20.1	20.1
1.00	D	10	9	21.5	20.5	20.0	20.2	20.2	20.1	20.1	20.1
1.00	E	10	10	21.5	20.5	20.0	20.2	20.2	20.1	20.1	20.1
1.50	A	10	10	22.5	21.5	21.8	22.9	22.9	22.8	22.8	22.8
1.50	B	10	9	22.5	21.5	21.8	22.9	22.9	22.8	22.8	22.8
1.50	C	10	8	22.5	21.5	21.8	22.9	22.9	22.8	22.8	22.8
1.50	D	10	9	22.5	21.5	21.8	22.9	22.9	22.8	22.8	22.8
1.50	E	10	10	22.5	21.5	21.8	22.9	22.9	22.8	22.8	22.8
2.00	A	10	10	23.5	22.5	22.8	23.9	23.9	23.8	23.8	23.8
2.00	B	10	9	23.5	22.5	22.8	23.9	23.9	23.8	23.8	23.8
2.00	C	10	8	23.5	22.5	22.8	23.9	23.9	23.8	23.8	23.8
2.00	D	10	9	23.5	22.5	22.8	23.9	23.9	23.8	23.8	23.8
2.00	E	10	10	23.5	22.5	22.8	23.9	23.9	23.8	23.8	23.8
2.50	A	10	10	24.5	23.5	23.8	25.9	25.9	25.8	25.8	25.8
2.50	B	10	9	24.5	23.5	23.8	25.9	25.9	25.8	25.8	25.8
2.50	C	10	8	24.5	23.5	23.8	25.9	25.9	25.8	25.8	25.8
2.50	D	10	9	24.5	23.5	23.8	25.9	25.9	25.8	25.8	25.8
2.50	E	10	10	24.5	23.5	23.8	25.9	25.9	25.8	25.8	25.8
3.00	A	10	10	25.5	24.5	24.8	26.9	26.9	26.8	26.8	26.8
3.00	B	10	9	25.5	24.5	24.8	26.9	26.9	26.8	26.8	26.8
3.00	C	10	8	25.5	24.5	24.8	26.9	26.9	26.8	26.8	26.8
3.00	D	10	9	25.5	24.5	24.8	26.9	26.9	26.8	26.8	26.8
3.00	E	10	10	25.5	24.5	24.8	26.9	26.9	26.8	26.8	26.8
4.00	A	10	10	26.5	25.5	25.8	27.9	27.9	27.8	27.8	27.8
4.00	B	10	9	26.5	25.5	25.8	27.9	27.9	27.8	27.8	27.8
4.00	C	10	8	26.5	25.5	25.8	27.9	27.9	27.8	27.8	27.8
4.00	D	10	9	26.5	25.5	25.8	27.9	27.9	27.8	27.8	27.8
4.00	E	10	10	26.5	25.5	25.8	27.9	27.9	27.8	27.8	27.8
5.00	A	10	10	27.5	26.5	26.8	28.9	28.9	28.8	28.8	28.8
5.00	B	10	9	27.5	26.5	26.8	28.9	28.9	28.8	28.8	28.8
5.00	C	10	8	27.5	26.5	26.8	28.9	28.9	28.8	28.8	28.8
5.00	D	10	9	27.5	26.5	26.8	28.9	28.9	28.8	28.8	28.8
5.00	E	10	10	27.5	26.5	26.8	28.9	28.9	28.8	28.8	28.8
6.00	A	10	10	28.5	27.5	27.8	30.0	30.0	29.9	29.9	29.9
6.00	B	10	9	28.5	27.5	27.8	30.0	30.0	29.9	29.9	29.9
6.00	C	10	8	28.5	27.5	27.8	30.0	30.0	29.9	29.9	29.9
6.00	D	10	9	28.5	27.5	27.8	30.0	30.0	29.9	29.9	29.9
6.00	E	10	10	28.5	27.5	27.8	30.0	30.0	29.9	29.9	29.9
7.00	A	10	10	29.5	28.5	28.8	31.0	31.0	30.9	30.9	30.9
7.00	B	10	9	29.5	28.5	28.8	31.0	31.0	30.9	30.9	30.9
7.00	C	10	8	29.5	28.5	28.8	31.0	31.0	30.9	30.9	30.9
7.00	D	10	9	29.5	28.5	28.8	31.0	31.0	30.9	30.9	30.9
7.00	E	10	10	29.5	28.5	28.8	31.0	31.0	30.9	30.9	30.9
8.00	A	10	10	30.5	29.5	29.8	32.0	32.0	31.9	31.9	31.9
8.00	B	10	9	30.5	29.5	29.8	32.0	32.0	31.9	31.9	31.9
8.00	C	10	8	30.5	29.5	29.8	32.0	32.0	31.9	31.9	31.9
8.00	D	10	9	30.5	29.5	29.8	32.0	32.0	31.9	31.9	31.9
8.00	E	10	10	30.5	29.5	29.8	32.0	32.0	31.9	31.9	31.9
9.00	A	10	10	31.5	30.5	30.8	33.7	33.7	33.6	33.6	33.6
9.00	B	10	9	31.5	30.5	30.8	33.7	33.7	33.6	33.6	33.6
9.00	C	10	8	31.5	30.5	30.8	33.7	33.7	33.6	33.6	33.6
9.00	D	10	9	31.5	30.5	30.8	33.7	33.7	33.6	33.6	33.6
9.00	E	10	10	31.5	30.5	30.8	33.7	33.7	33.6	33.6	33.6
10.00	A	10	10	32.5	31.5	31.8	34.9	34.9	34.8	34.8	34.8
10.00	B	10	9	32.5	31.5	31.8	34.9	34.9	34.8	34.8	34.8
10.00	C	10	8	32.5	31.5	31.8	34.9	34.9	34.8	34.8	34.8
10.00	D	10	9	32.5	31.5	31.8	34.9	34.9	34.8	34.8	34.8
10.00	E	10	10	32.5	31.5	31.8	34.9	34.9	34.8	34.8	34.8
11.00	A	10	10	33.5	32.5	32.8	36.0	36.0	35.9	35.9	35.9
11.00	B	10	9	33.5	32.5	32.8	36.0	36.0	35.9	35.9	35.9
11.00	C	10	8	33.5	32.5	32.8	36.0	36.0	35.9	35.9	35.9
11.00	D	10	9	33.5	32.5	32.8	36.0	36.0	35.9	35.9	35.9
11.00	E	10	10	33.5	32.5	32.8	36.0	36.0	35.9	35.9	35.9
12.00	A	10	10	34.5	33.5	33.8	37.1	37.1	37.0	37.0	37.0
12.00	B	10	9	34.5	33.5	33.8	37.1	37.1	37.0	37.0	37.0
12.00	C	10	8	34.5	33.5	33.8	37.1	37.1	37.0	37.0	37.0
12.00	D	10	9	34.5	33.5	33.8	37.1	37.1	37.0	37.0	37.0
12.00	E	10	10	34.5	33.5	33.8	37.1	37.1	37.0	37.0	37.0
13.00	A	10	10	35.5	34.5	34.8	38.2	38.2	38.1	38.1	38.1
13.00	B	10	9	35.5	34.5	34.8	38.2	38.2	38.1	38.1	38.1
13.00	C	10	8	35.5	34.5	34.8	38.2	38.2	38.1	38.1	38.1
13.00	D	10	9	35.5	34.5	34.8	38.2	38.2	38.1	38.1	38.1
13.00	E	10	10	35.5	34.5	34.8	38.2	38.2	38.1	38.1	38.1
14.00	A	10	10	36.5	35.5	35.8	39.3	39.3	39.2	39.2	39.2
14.00	B	10	9	36.5	35.5	35.8	39.3	39.3	39.2	39.2	39.2
14.00	C	10	8	36.5	35.5	35.8	39.3	39.3	39.2	39.2	39.2
14.00	D	10	9	36.5	35.5	35.8	39.3	39.3	39.2	39.2	39.2
14.00	E	10	10	36.5	35.5	35.8	39.3	39.3	39.2	39.2	39.2

Lauron May
29 March 19

ELUTRIATE TOXICITY TEST SHEET															
Project: HSL NMP				Test Initiation Date: 10/29/18				Time: 1520							
Site ID: 5				Test Termination Date:				Time: 1324							
Test Species: Menidia						Page 1 of 1									
Exposure duration 96h						Environmental chamber temperature: 20°C									
Cont.	Rep.	No.	No. Alive	Temp. (°C)	Salinity (psu)	pH (SII)	D.O. (mg/L)	Ammonia (mg/L)							
	Repl.	Labeled	24 h	48 h	72 h	96 h	0 h	24 h	48 h	72 h	96 h				
Silt	A	10	10	10	10	10	10	10	10	10	10				
	B	10	10	10	10	10	10	10	10	10	10				
	C	10	10	10	10	10	10	10	10	10	10				
	D	10	10	10	10	10	10	10	10	10	10				
	E	10	10	10	10	10	10	10	10	10	10				
	A	10	8	8	8	8	8	8	8	8	8				
101.	B	10	9	9	9	9	9	9	9	9	9				
	C	10	10	10	10	10	10	10	10	10	10				
	D	10	10	10	10	10	10	10	10	10	10				
	E	10	10	10	10	10	10	10	10	10	10				
	A	10	10	10	10	10	10	10	10	10	10				
	B	10	10	10	10	10	10	10	10	10	10				
501.	C	10	10	10	10	10	10	10	10	10	10				
	D	10	8	8	8	8	8	8	8	8	8				
	E	10	10	10	10	10	10	10	10	10	10				
	A	10	10	10	10	10	10	10	10	10	10				
	B	10	10	10	10	10	10	10	10	10	10				
	C	10	10	10	10	10	10	10	10	10	10				
501.	D	10	8	8	8	8	8	8	8	8	8				
	E	10	10	10	10	10	10	10	10	10	10				
	A	10	10	10	10	10	10	10	10	10	10				
	B	10	9	9	9	9	9	9	9	9	9				
	C	10	10	10	10	10	10	10	10	10	10				
	D	10	10	10	10	10	10	10	10	10	10				
1001.	E	10	10	10	10	10	10	10	10	10	10				
	A	10	9	9	9	9	9	9	9	9	9				
	B	10	10	10	10	10	10	10	10	10	10				
	C	10	10	10	10	10	10	10	10	10	10				
	D	10	10	10	10	10	10	10	10	10	10				
	E	10	10	10	10	10	10	10	10	10	10				
Initials: A H B H C H D H E H				Initials: A H B H C H D H E H				Initials: A H B H C H D H E H							
Date: 10/29/18				Date: 10/30/18				Date: 10/31/18							
Time: 1520				Time: 1525				Time: 1530							
Initials (RA): R				Initials (RA): R				Initials (RA): R							

Reviewed by Lauren May on 29 March 19

ELUTRIATE TOXICITY TEST SHEET

Reviewed by Julien May on 29 March 19

ELUTRIATE TOXICITY TEST SHEET													
Project: HSC NMP		Test Initiation Date: 10/29/18		Time: 1625									
Site ID: 7		Test Termination Date: 11/2/18		Time: 1333									
Test Species: <i>Menidia menidia</i>		Page 1 of 1											
Exposure duration: 96 h		Environmental chamber temperature: 20°C											
Site		No.		No. Alive		Temp. (°C)		Salinity (ppt.)		pH (SIU)		D.O. (mg/L)	
Walter		Conc.		Repl. Founded		24 h		48 h		72 h		96 h	
101.		A		10		10		10		10		10	
501.		B		10		10		10		10		10	
1001.		C		10		10		10		10		10	
Initial: AK		Date: 10/29		Time: 10:29		10:30		10:30		10:30		10:30	
Initial (QAL): QR		Initial: AK		Date: 10/29		Time: 10:30		10:30		10:30		10:30	
Reviewed by <u>Lawson May</u> on 29 March 19													

ELUTRIATE TOXICITY TEST SHEET											
Project: HGU NMP				Test Initiation Date: 10/29/18		Time: 520		Test Termination Date: 11/2/18			
Site ID: 9				Page 1 of 1		Environmental chamber temperature: 20°C					
Exposure duration: 24h											
Conc.	Replicates	No.	Alive	Temp. (°C)		Temp. (°C)		Salinity (ppt)		pH (SI)	
Site: Water											
A	10	10	10	9	19.6	19.6	19.6	20.0	29.63	30.1	30.4
	10	10	10	10	19.6	19.6	19.6	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
100%											
A	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
50%											
A	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
100%											
A	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
	10	10	10	10	19.7	19.7	19.7	20.0	29.63	30.1	30.4
Initials: PJK											
Date: 10/29/18	10/30/18	10/31/18	11/1/18	11/2/18	10/29/18	10/30/18	10/31/18	10/30/18	10/31/18	10/30/18	10/31/18
Time: 10:00	11:10	12:30	13:30	14:30	10:00	11:10	12:30	10:00	11:10	12:30	10:00
Initials (Q.A.): YR	MP	VR	VR	VR	VR	VR	VR	VR	VR	VR	VR

Reviewed by: Julian M. May on 24 March 19

August 11, 1941

on March 19

ELUTRIATE TOXICITY TEST SHEET																			
Project: HSC NMP			Test Initiation Date: 10/29/18			Time: 14:00													
Site ID: 11			Test Termination Date: 11/2/18			Time: 13:00													
Test Species: <u>Mendia</u>			Page 1 of 1																
Exposure duration: 96h			Environmental chamber temperature: 20°C																
Cont.	Rep.	Landed	No. Alive			Temp. (°C)			Salinity (psu)			pH (SUS)			D.O. (mg/L)	Ammonia (mg/L)			
			24 h	48 h	72 h	0 h	24 h	48 h	72 h	0 h	24 h	48 h	72 h	0 h			24 h	48 h	72 h
Site Water	A	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	B	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	C	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	D	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	E	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
101	A	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	B	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	C	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	D	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	E	10	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
501	A	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	B	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	C	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	D	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	E	10	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
1001	A	10	10	6	6	20.32	20.2	20.6	20.6	20.1	20.1	20.1	20.1	20.1	20.1	20.1	20.1	20.1	20.1
	B	10	10	7	7	21	21	21	21	21	21	21	21	21	21	21	21	21	21
	C	10	10	9	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
	D	10	10	9	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	E	10	10	9	8	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Initials (A-E):	A	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK
	B	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK
	C	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK
	D	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK
	E	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK
Date:	10/29/18	10/30/18	10/31/18	11/1/18	11/2/18	11/3/18	11/4/18	11/5/18	11/6/18	11/7/18	11/8/18	11/9/18	11/10/18	11/11/18	11/12/18	11/13/18	11/14/18	11/15/18	11/16/18
	10/29/18	10/30/18	10/31/18	11/1/18	11/2/18	11/3/18	11/4/18	11/5/18	11/6/18	11/7/18	11/8/18	11/9/18	11/10/18	11/11/18	11/12/18	11/13/18	11/14/18	11/15/18	11/16/18
	10/29/18	10/30/18	10/31/18	11/1/18	11/2/18	11/3/18	11/4/18	11/5/18	11/6/18	11/7/18	11/8/18	11/9/18	11/10/18	11/11/18	11/12/18	11/13/18	11/14/18	11/15/18	11/16/18
Initials (A-E):			UR	UR	UR	UR	UR	UR	UR	UR	UR	UR	UR	UR	UR	UR	UR	UR	UR

Reviewed by Flavien May on 29 March 19

EQUILIBRIATE TOXICITY TEST SHEET											
Project HSG NMP		Test Initiation Date: 04/29/13		Test Termination Date: 05/21/13		Time 300		Time 314		Time 300	
Site ID	Control	Test Species	<i>Menidia</i>	Page	of	Environmental chamber temperature	20°C	Salinity (psu)	pH (US)	D.O. (mg/L)	Ammonia (mg/L)
Canc.	Rep.	No.	No. Alive	Temp (°C)		Temp (°C)		Salinity (psu)		D.O. (mg/L)	
	Rep.	Landed		24 h	48 h	72 h	96 h	0 h	24 h	48 h	72 h
A	10	10	10	10	10	20.8	20.8	20.6	30.8	30.2	30.2
B	10	10	10	10	10	20.7	20.7	20.7	30.7	30.7	30.7
C	10	10	10	10	10	20.7	20.7	20.7	30.7	30.7	30.7
D	10	10	10	10	10	20.6	20.6	20.6	30.7	30.7	30.7
E	10	10	10	9	9	20.9	20.9	20.7	30.7	30.7	30.7
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
A											
B											
C											
D											
E											
Initials	A	TB	MM	MM	MM	MM	MM	MM	MM	MM	MM
Date:	04/29/13	10:30	10:31	11:1	11:2	04/29/13	10:30	10:31	11:1	11:2	10:30/10:31
Time:	13:00	14:00	14:05	14:05	14:05	14:00	14:00	14:05	14:05	14:05	14:00/14:05
Initials (O):	A	B	C	D	E						

Lauren May
29 March 99

5.8 Appendix H. Sediment Chain of Custody Information

ORIGIN OF SURFACE WATERS		EL. CER01-0-SP-R		Page 1	
Sampling Company: Beachworks, Inc.		Additional Notes:			
POC/Mgr: <u>Heath Martin</u> Address: <u>P.O. Box 158, Katy, TX 77492</u> Email: <u>Heath.Martin@beachworks.com</u> Phone: <u>281-703-0257</u>		Project Manager: <u>Greg Hartung</u> Address: <u>896 Varga Road Cleveland, MI 49112</u> Email: <u>Greg.Hartung@erco.com</u> Phone: <u>(W) 319-318-3844 (C) 781-254-3117</u>		Site Name: <u>3009 Hwy 59 Ferry Road Site 6066 Vicksburg, MS 39180</u> Comments: <u>Sample taken from the surface of the water at the site.</u>	
ERDC:	Project Manager:	Dan Farmer			
Address:	Address:	3009 Hwy 59 Ferry Road Site 6066 Vicksburg, MS 39180			
Channel North of Morgan's Point		Comments: <u>Sample taken from the surface of the water at the site.</u>			
Sampling Date: <u>10-2-10</u>		Sample Name: <u>N/A Sed B</u>		Depth: <u>0.831</u>	
Time: <u>13:30</u>		Date: <u>10-2-10</u>		Time: <u>13:30</u>	
Sample Number: <u>HS/C/Nw-NMP-11</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Type: <u>Water</u>		Media: <u>Water</u>		Media: <u>Water</u>	
Sample Volume: <u>1.000 mL</u>		Time: <u>0.831</u>		Time: <u>0.831</u>	
Sample Temperature: <u>24.4°C</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample pH: <u>7.0</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Conductivity: <u>246.4 mS/cm</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Oxygen: <u>7.4 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Solids: <u>100 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Metals: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Organic Compounds: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Gases: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Particulates: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved PCBs: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Polychlorinated Biphenyls: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Polycyclic Aromatic Hydrocarbons: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Organic Compounds: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.000 mg/L</u>		Depth: <u>0.831</u>		Depth: <u>0.831</u>	
Sample Dissolved Volatile Phenols: <u>0.00</u>					

CHART RECORDED BY RECORD											
USEAGE BRC1, Laboratory, 800 Main St, Party Hill, Vicksburg, MS 39090											
Sampling Company		Project Manager:		BL CERED-ED-4-R		Page 1 of 2		Additional Notes:		S91100a cutwaters	
POC: <u>BL CERED-ED-4-R</u>		Chery Management		800 Main Street		See Form					
Address:		800 Main Street		Vicksburg, MS 39090							
Email:		Corporation, MA 01748		500 Main Street		Vicksburg, MS 39090					
Phone:		W: 601-634-2118 C: 767-353-8317		W: 601-634-2118 C: 767-353-8317		W: 601-634-2118 C: 767-353-8317					
Houston Ship Channel North of Mergers Point		Project Manager:		Chery Management		800 Main Street		Vicksburg, MS 39090		S91100a cutwaters	
Samples Name		Depth		Time		Date		Station		TPH	
1. HSC New Map-0150		10-22-18		10-22-18		10-22-18		10-22-18		10-22-18	
2. HSC New Map-0350		10-22-18		10-22-18		10-22-18		10-22-18		10-22-18	
3. HSC New Map-0350		10-22-18		10-22-18		10-22-18		10-22-18		10-22-18	
4. HSC New Map-0350		10-22-18		10-22-18		10-22-18		10-22-18		10-22-18	
5. HSC New Map-0350		10-22-18		10-22-18		10-22-18		10-22-18		10-22-18	
6. HSC New Map-0350		10-22-18		10-22-18		10-22-18		10-22-18		10-22-18	
7. HSC New Map-0350		10-22-18		10-22-18		10-22-18		10-22-18		10-22-18	
8.											
9.											
10.											
11.											
12.											
13.											
14.											
15.											
16.											
17.											
18.											
19.											
20.											
21.											
22.											
23.											
24.											
25.											
26.											
27.											
28.											
29.											
30.											
31.											
32.											
33.											
34.											
35.											
36.											
37.											
38.											
39.											
40.											
41.											
42.											
43.											
44.											
45.											
46.											
47.											
48.											
49.											
50.											
51.											
52.											
53.											
54.											
55.											
56.											
57.											
58.											
59.											
60.											
61.											
62.											
63.											
64.											
65.											
66.											
67.											
68.											
69.											
70.											
71.											
72.											
73.											
74.											
75.											
76.											
77.											
78.											
79.											
80.											
81.											
82.											
83.											
84.											
85.											
86.											
87.											
88.											
89.											
90.											
91.											
92.											
93.											
94.											
95.											
96.											
97.											
98.											
99.											
100.											
101.											
102.											
103.											
104.											
105.											
106.											
107.											
108.											
109.											
110.											
111.											
112.											
113.											
114.											
115.											
116.											
117.											
118.											
119.											
120.											
121.											
122.											
123.											
124.											
125.											
126.											
127.											
128.											
129.											
130.											
131.											
132.											
133.											
134.											
135.											
136.											
137.											
138.											
139.											
140.											
141.											
142.											
143.											
144.											
145.											
146.											
147.											
148.											
149.											
150.											
151.											
152.											
153.											
154.											
155.											
156.											
157.											
158.											
159.											
160.											
161.											
162.											
163.											
164.											
165.											
166.											
167.											
168.											
169.											
170.											
171.											
172.											
173.											
174.											
175.											
176.											
177.											
178.											
179.											
180.											
181.											
182.											
183.											
184.											
185.											
186.											
187.											
188.											
189.											
190.											
191.											
192.											
193.											
194.											
195.											
196.											
197.											
198.											
199.											
200.											
201.											
202.											
203.											
204.											
205.											
206.											
207.											
208.											
209.											
210.											
211.											
212.											
213.											
214.											
215.											
216.											
217.											
218.											
219.											
220.											
221.											
222.											
223.											
224.											

Equip blanket kit:
25 cloth naps,
8 sponge bars,
wash 1 3/4 10L
cubitainers.

includes S S galactic:

Chain of Custody Record											
USA/CE ERDC Laboratories, 2000 Hall Hwy, Rockville, MD 20850											
Sampling Company		Project Manager:		EL CERT/CDR		EL CERT/CDR		Additional Notes:			
POC: <u>Jeff Henthorn</u>	Address: <u>Cheryl Montgomery</u>	Project Manager: <u>Jeff Henthorn</u>	Address: <u>650 Virginia Road</u>	EL CERT/CDR	EL CERT/CDR	EL CERT/CDR	EL CERT/CDR	Data Sheet			
Address: <u>Concord, MA 01746</u>	Email: <u>cheryl.montgomery@usace.army.mil</u>	Phone: <u>W: 978-315-6544</u>	Phone: <u>C: 781-329-0617</u>					Data Sheet			
1. 10% NIST Database, Per-Certified											
2. 10% NIST Database, Per-Certified											
3. 10% NIST Database, Per-Certified											
4. 10% NIST Database, Per-Certified											
5. 10% NIST Database, Per-Certified											
6. 10% NIST Database, Per-Certified											
7. 10% NIST Database, Per-Certified											
8. 10% NIST Database, Per-Certified											
9. 10% NIST Database, Per-Certified											
10. 10% NIST Database, Per-Certified											
11. 10% NIST Database, Per-Certified											
12. 10% NIST Database, Per-Certified											
13. 10% NIST Database, Per-Certified											
14. 10% NIST Database, Per-Certified											
15. 10% NIST Database, Per-Certified											
16. 10% NIST Database, Per-Certified											
17. 10% NIST Database, Per-Certified											
18. 10% NIST Database, Per-Certified											
19. 10% NIST Database, Per-Certified											
20. 10% NIST Database, Per-Certified											
21. 10% NIST Database, Per-Certified											
22. 10% NIST Database, Per-Certified											
23. 10% NIST Database, Per-Certified											
24. 10% NIST Database, Per-Certified											
25. 10% NIST Database, Per-Certified											
26. 10% NIST Database, Per-Certified											
27. 10% NIST Database, Per-Certified											
28. 10% NIST Database, Per-Certified											
29. 10% NIST Database, Per-Certified											
30. 10% NIST Database, Per-Certified											
31. 10% NIST Database, Per-Certified											
32. 10% NIST Database, Per-Certified											
33. 10% NIST Database, Per-Certified											
34. 10% NIST Database, Per-Certified											
35. 10% NIST Database, Per-Certified											
36. 10% NIST Database, Per-Certified											
37. 10% NIST Database, Per-Certified											
38. 10% NIST Database, Per-Certified											
39. 10% NIST Database, Per-Certified											
40. 10% NIST Database, Per-Certified											
41. 10% NIST Database, Per-Certified											
42. 10% NIST Database, Per-Certified											
43. 10% NIST Database, Per-Certified											
44. 10% NIST Database, Per-Certified											
45. 10% NIST Database, Per-Certified											
46. 10% NIST Database, Per-Certified											
47. 10% NIST Database, Per-Certified											
48. 10% NIST Database, Per-Certified											
49. 10% NIST Database, Per-Certified											
50. 10% NIST Database, Per-Certified											
51. 10% NIST Database, Per-Certified											
52. 10% NIST Database, Per-Certified											
53. 10% NIST Database, Per-Certified											
54. 10% NIST Database, Per-Certified											
55. 10% NIST Database, Per-Certified											
56. 10% NIST Database, Per-Certified											
57. 10% NIST Database, Per-Certified											
58. 10% NIST Database, Per-Certified											
59. 10% NIST Database, Per-Certified											
60. 10% NIST Database, Per-Certified											
61. 10% NIST Database, Per-Certified											
62. 10% NIST Database, Per-Certified											
63. 10% NIST Database, Per-Certified											
64. 10% NIST Database, Per-Certified											
65. 10% NIST Database, Per-Certified											
66. 10% NIST Database, Per-Certified											
67. 10% NIST Database, Per-Certified											
68. 10% NIST Database, Per-Certified											
69. 10% NIST Database, Per-Certified											
70. 10% NIST Database, Per-Certified											
71. 10% NIST Database, Per-Certified											
72. 10% NIST Database, Per-Certified											
73. 10% NIST Database, Per-Certified											
74. 10% NIST Database, Per-Certified											
75. 10% NIST Database, Per-Certified											
76. 10% NIST Database, Per-Certified											
77. 10% NIST Database, Per-Certified											
78. 10% NIST Database, Per-Certified											
79. 10% NIST Database, Per-Certified											
80. 10% NIST Database, Per-Certified											
81. 10% NIST Database, Per-Certified											
82. 10% NIST Database, Per-Certified											
83. 10% NIST Database, Per-Certified											
84. 10% NIST Database, Per-Certified											
85. 10% NIST Database, Per-Certified											
86. 10% NIST Database, Per-Certified											
87. 10% NIST Database, Per-Certified											
88. 10% NIST Database, Per-Certified											
89. 10% NIST Database, Per-Certified											
90. 10% NIST Database, Per-Certified											
91. 10% NIST Database, Per-Certified											
92. 10% NIST Database, Per-Certified											
93. 10% NIST Database, Per-Certified											
94. 10% NIST Database, Per-Certified											
95. 10% NIST Database, Per-Certified											
96. 10% NIST Database, Per-Certified											
97. 10% NIST Database, Per-Certified											
98. 10% NIST Database, Per-Certified											
99. 10% NIST Database, Per-Certified											
100. 10% NIST Database, Per-Certified											
101. 10% NIST Database, Per-Certified											
102. 10% NIST Database, Per-Certified											
103. 10% NIST Database, Per-Certified											
104. 10% NIST Database, Per-Certified											
105. 10% NIST Database, Per-Certified											
106. 10% NIST Database, Per-Certified											
107. 10% NIST Database, Per-Certified											